name: "YuFaceDetectNet" input: "data" input_shape { dim: 1 dim: 3 dim: 480 dim: 640 } #CONV1########################################################### layer { name: "conv1_1" type: "Convolution" bottom: "data" top: "conv1_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 pad: 1 stride: 2 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu1_1" type: "ReLU" bottom: "conv1_1" top: "conv1_1" } layer { name: "conv1_2" type: "Convolution" bottom: "conv1_1" top: "conv1_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu1_2" type: "ReLU" bottom: "conv1_2" top: "conv1_2" } #CONV2########################################################## layer { name: "pool1" type: "Pooling" bottom: "conv1_2" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv2_1" type: "Convolution" bottom: "pool1" top: "conv2_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu2_1" type: "ReLU" bottom: "conv2_1" top: "conv2_1" } layer { name: "conv2_2" type: "Convolution" bottom: "conv2_1" top: "conv2_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu2_2" type: "ReLU" bottom: "conv2_2" top: "conv2_2" } #CONV3########################################################## layer { name: "pool2" type: "Pooling" bottom: "conv2_2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu3_1" type: "ReLU" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu3_2" type: "ReLU" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv3_3" type: "Convolution" bottom: "conv3_2" top: "conv3_3" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu3_3" type: "ReLU" bottom: "conv3_3" top: "conv3_3" } #CONV4########################################################## layer { name: "pool3" type: "Pooling" bottom: "conv3_3" top: "pool3" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv4_1" type: "Convolution" bottom: "pool3" top: "conv4_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu4_1" type: "ReLU" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu4_2" type: "ReLU" bottom: "conv4_2" top: "conv4_2" } layer { name: "conv4_3" type: "Convolution" bottom: "conv4_2" top: "conv4_3" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu4_3" type: "ReLU" bottom: "conv4_3" top: "conv4_3" } #CONV5########################################################## layer { name: "pool4" type: "Pooling" bottom: "conv4_3" top: "pool4" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv5_1" type: "Convolution" bottom: "pool4" top: "conv5_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu5_1" type: "ReLU" bottom: "conv5_1" top: "conv5_1" } layer { name: "conv5_2" type: "Convolution" bottom: "conv5_1" top: "conv5_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu5_2" type: "ReLU" bottom: "conv5_2" top: "conv5_2" } layer { name: "conv5_3" type: "Convolution" bottom: "conv5_2" top: "conv5_3" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu5_3" type: "ReLU" bottom: "conv5_3" top: "conv5_3" } #CONV6########################################################## layer { name: "pool5" type: "Pooling" bottom: "conv5_3" top: "pool5" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv6_1" type: "Convolution" bottom: "pool5" top: "conv6_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu6_1" type: "ReLU" bottom: "conv6_1" top: "conv6_1" } layer { name: "conv6_2" type: "Convolution" bottom: "conv6_1" top: "conv6_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu6_2" type: "ReLU" bottom: "conv6_2" top: "conv6_2" } layer { name: "conv6_3" type: "Convolution" bottom: "conv6_2" top: "conv6_3" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu6_3" type: "ReLU" bottom: "conv6_3" top: "conv6_3" } #PRIORBOX3########################################## layer { name: "conv3_3_norm_mbox_loc" type: "Convolution" bottom: "conv3_3" top: "conv3_3_norm_mbox_loc" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 12 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv3_3_norm_mbox_conf" type: "Convolution" bottom: "conv3_3" top: "conv3_3_norm_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 6 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } #PRIORBOX4########################################## layer { name: "conv4_3_norm_mbox_loc" type: "Convolution" bottom: "conv4_3" top: "conv4_3_norm_mbox_loc" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 8 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv4_3_norm_mbox_conf" type: "Convolution" bottom: "conv4_3" top: "conv4_3_norm_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 4 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } #PRIORBOX5########################################## layer { name: "conv5_3_norm_mbox_loc" type: "Convolution" bottom: "conv5_3" top: "conv5_3_norm_mbox_loc" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 8 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv5_3_norm_mbox_conf" type: "Convolution" bottom: "conv5_3" top: "conv5_3_norm_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 4 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } #PRIORBOX6########################################## layer { name: "conv6_3_norm_mbox_loc" type: "Convolution" bottom: "conv6_3" top: "conv6_3_norm_mbox_loc" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 12 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv6_3_norm_mbox_conf" type: "Convolution" bottom: "conv6_3" top: "conv6_3_norm_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 6 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } }