name: "YuFaceDetectNet" layer { name: "data" type: "AnnotatedData" top: "data" top: "label" include { phase: TRAIN } transform_param { mirror: true # mean_value: 104.0 # mean_value: 117.0 # mean_value: 123.0 resize_param { prob: 1.0 resize_mode: WARP height: 240 width: 320 interp_mode: LINEAR interp_mode: AREA interp_mode: NEAREST interp_mode: CUBIC interp_mode: LANCZOS4 } emit_constraint { emit_type: CENTER } distort_param { brightness_prob: 0.5 brightness_delta: 32.0 contrast_prob: 0.5 contrast_lower: 0.5 contrast_upper: 1.5 hue_prob: 0.5 hue_delta: 18.0 saturation_prob: 0.5 saturation_lower: 0.5 saturation_upper: 1.5 random_order_prob: 0.0 } } data_param { source: "../FACE/lmdb/FACE_trainval_lmdb/" batch_size: 16 backend: LMDB } annotated_data_param { batch_sampler { sampler { min_scale: 1.0 max_scale: 1.0 min_aspect_ratio: 1.0 max_aspect_ratio: 1.0 } sample_constraint { min_object_coverage: 1.0 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.300000011921 max_scale: 1.0 min_aspect_ratio: 1.0 max_aspect_ratio: 1.0 } sample_constraint { min_object_coverage: 1.0 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.300000011921 max_scale: 1.0 min_aspect_ratio: 1.0 max_aspect_ratio: 1.0 } sample_constraint { min_object_coverage: 1.0 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.300000011921 max_scale: 1.0 min_aspect_ratio: 1.0 max_aspect_ratio: 1.0 } sample_constraint { min_object_coverage: 1.0 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.300000011921 max_scale: 1.0 min_aspect_ratio: 1.0 max_aspect_ratio: 1.0 } sample_constraint { min_object_coverage: 1.0 } max_sample: 1 max_trials: 50 } label_map_file: "../labelmap_face.prototxt" } } #CONV1########################################################### layer { name: "conv1_1" type: "Convolution" bottom: "data" top: "conv1_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 pad: 1 stride: 2 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu1_1" type: "ReLU" bottom: "conv1_1" top: "conv1_1" } layer { name: "conv1_2" type: "Convolution" bottom: "conv1_1" top: "conv1_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu1_2" type: "ReLU" bottom: "conv1_2" top: "conv1_2" } #CONV2########################################################## layer { name: "pool1" type: "Pooling" bottom: "conv1_2" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv2_1" type: "Convolution" bottom: "pool1" top: "conv2_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu2_1" type: "ReLU" bottom: "conv2_1" top: "conv2_1" } layer { name: "conv2_2" type: "Convolution" bottom: "conv2_1" top: "conv2_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu2_2" type: "ReLU" bottom: "conv2_2" top: "conv2_2" } #CONV3########################################################## layer { name: "pool2" type: "Pooling" bottom: "conv2_2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu3_1" type: "ReLU" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu3_2" type: "ReLU" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv3_3" type: "Convolution" bottom: "conv3_2" top: "conv3_3" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu3_3" type: "ReLU" bottom: "conv3_3" top: "conv3_3" } #CONV4########################################################## layer { name: "pool3" type: "Pooling" bottom: "conv3_3" top: "pool3" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv4_1" type: "Convolution" bottom: "pool3" top: "conv4_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu4_1" type: "ReLU" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu4_2" type: "ReLU" bottom: "conv4_2" top: "conv4_2" } layer { name: "conv4_3" type: "Convolution" bottom: "conv4_2" top: "conv4_3" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false } } layer { name: "relu4_3" type: "ReLU" bottom: "conv4_3" top: "conv4_3" } #CONV5########################################################## layer { name: "pool4" type: "Pooling" bottom: "conv4_3" top: "pool4" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv5_1" type: "Convolution" bottom: "pool4" top: "conv5_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu5_1" type: "ReLU" bottom: "conv5_1" top: "conv5_1" } layer { name: "conv5_2" type: "Convolution" bottom: "conv5_1" top: "conv5_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu5_2" type: "ReLU" bottom: "conv5_2" top: "conv5_2" } layer { name: "conv5_3" type: "Convolution" bottom: "conv5_2" top: "conv5_3" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu5_3" type: "ReLU" bottom: "conv5_3" top: "conv5_3" } #CONV6########################################################## layer { name: "pool5" type: "Pooling" bottom: "conv5_3" top: "pool5" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv6_1" type: "Convolution" bottom: "pool5" top: "conv6_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu6_1" type: "ReLU" bottom: "conv6_1" top: "conv6_1" } layer { name: "conv6_2" type: "Convolution" bottom: "conv6_1" top: "conv6_2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu6_2" type: "ReLU" bottom: "conv6_2" top: "conv6_2" } layer { name: "conv6_3" type: "Convolution" bottom: "conv6_2" top: "conv6_3" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_term: false dilation: 1 } } layer { name: "relu6_3" type: "ReLU" bottom: "conv6_3" top: "conv6_3" } #PRIORBOX3########################################## layer { name: "conv3_3_norm" type: "Normalize" bottom: "conv3_3" top: "conv3_3_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 10.0 } channel_shared: false } } layer { name: "conv3_3_norm_mbox_loc" type: "Convolution" bottom: "conv3_3_norm" top: "conv3_3_norm_mbox_loc" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 12 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv3_3_norm_mbox_loc_perm" type: "Permute" bottom: "conv3_3_norm_mbox_loc" top: "conv3_3_norm_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv3_3_norm_mbox_loc_flat" type: "Flatten" bottom: "conv3_3_norm_mbox_loc_perm" top: "conv3_3_norm_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv3_3_norm_mbox_conf" type: "Convolution" bottom: "conv3_3_norm" top: "conv3_3_norm_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 6 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv3_3_norm_mbox_conf_perm" type: "Permute" bottom: "conv3_3_norm_mbox_conf" top: "conv3_3_norm_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv3_3_norm_mbox_conf_flat" type: "Flatten" bottom: "conv3_3_norm_mbox_conf_perm" top: "conv3_3_norm_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv3_3_norm_mbox_priorbox" type: "PriorBox" bottom: "conv3_3_norm" bottom: "data" top: "conv3_3_norm_mbox_priorbox" prior_box_param { min_size: 10.0 min_size: 16.0 min_size: 24.0 clip: false variance: 0.10000000149 variance: 0.10000000149 variance: 0.20000000298 variance: 0.20000000298 step: 8.0 offset: 0.5 } } #PRIORBOX4########################################## layer { name: "conv4_3_norm" type: "Normalize" bottom: "conv4_3" top: "conv4_3_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 8.0 } channel_shared: false } } layer { name: "conv4_3_norm_mbox_loc" type: "Convolution" bottom: "conv4_3_norm" top: "conv4_3_norm_mbox_loc" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 8 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv4_3_norm_mbox_loc_perm" type: "Permute" bottom: "conv4_3_norm_mbox_loc" top: "conv4_3_norm_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv4_3_norm_mbox_loc_flat" type: "Flatten" bottom: "conv4_3_norm_mbox_loc_perm" top: "conv4_3_norm_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv4_3_norm_mbox_conf" type: "Convolution" bottom: "conv4_3_norm" top: "conv4_3_norm_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 4 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv4_3_norm_mbox_conf_perm" type: "Permute" bottom: "conv4_3_norm_mbox_conf" top: "conv4_3_norm_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv4_3_norm_mbox_conf_flat" type: "Flatten" bottom: "conv4_3_norm_mbox_conf_perm" top: "conv4_3_norm_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv4_3_norm_mbox_priorbox" type: "PriorBox" bottom: "conv4_3_norm" bottom: "data" top: "conv4_3_norm_mbox_priorbox" prior_box_param { min_size: 32.0 min_size: 48.0 clip: false variance: 0.10000000149 variance: 0.10000000149 variance: 0.20000000298 variance: 0.20000000298 step: 16.0 offset: 0.5 } } #PRIORBOX5########################################## layer { name: "conv5_3_norm" type: "Normalize" bottom: "conv5_3" top: "conv5_3_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 5.0 } channel_shared: false } } layer { name: "conv5_3_norm_mbox_loc" type: "Convolution" bottom: "conv5_3_norm" top: "conv5_3_norm_mbox_loc" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 8 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv5_3_norm_mbox_loc_perm" type: "Permute" bottom: "conv5_3_norm_mbox_loc" top: "conv5_3_norm_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv5_3_norm_mbox_loc_flat" type: "Flatten" bottom: "conv5_3_norm_mbox_loc_perm" top: "conv5_3_norm_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv5_3_norm_mbox_conf" type: "Convolution" bottom: "conv5_3_norm" top: "conv5_3_norm_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 4 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv5_3_norm_mbox_conf_perm" type: "Permute" bottom: "conv5_3_norm_mbox_conf" top: "conv5_3_norm_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv5_3_norm_mbox_conf_flat" type: "Flatten" bottom: "conv5_3_norm_mbox_conf_perm" top: "conv5_3_norm_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv5_3_norm_mbox_priorbox" type: "PriorBox" bottom: "conv5_3_norm" bottom: "data" top: "conv5_3_norm_mbox_priorbox" prior_box_param { min_size: 64.0 min_size: 96.0 clip: false variance: 0.10000000149 variance: 0.10000000149 variance: 0.20000000298 variance: 0.20000000298 step: 32.0 offset: 0.5 } } #PRIORBOX6########################################## layer { name: "conv6_3_norm" type: "Normalize" bottom: "conv6_3" top: "conv6_3_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 5.0 } channel_shared: false } } layer { name: "conv6_3_norm_mbox_loc" type: "Convolution" bottom: "conv6_3_norm" top: "conv6_3_norm_mbox_loc" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 12 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv6_3_norm_mbox_loc_perm" type: "Permute" bottom: "conv6_3_norm_mbox_loc" top: "conv6_3_norm_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv6_3_norm_mbox_loc_flat" type: "Flatten" bottom: "conv6_3_norm_mbox_loc_perm" top: "conv6_3_norm_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv6_3_norm_mbox_conf" type: "Convolution" bottom: "conv6_3_norm" top: "conv6_3_norm_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 6 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_term: false } } layer { name: "conv6_3_norm_mbox_conf_perm" type: "Permute" bottom: "conv6_3_norm_mbox_conf" top: "conv6_3_norm_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv6_3_norm_mbox_conf_flat" type: "Flatten" bottom: "conv6_3_norm_mbox_conf_perm" top: "conv6_3_norm_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv6_3_norm_mbox_priorbox" type: "PriorBox" bottom: "conv6_3_norm" bottom: "data" top: "conv6_3_norm_mbox_priorbox" prior_box_param { min_size: 128.0 min_size: 192.0 min_size: 256.0 clip: false variance: 0.10000000149 variance: 0.10000000149 variance: 0.20000000298 variance: 0.20000000298 step: 64.0 offset: 0.5 } } ######################################################## layer { name: "mbox_loc" type: "Concat" bottom: "conv3_3_norm_mbox_loc_flat" bottom: "conv4_3_norm_mbox_loc_flat" bottom: "conv5_3_norm_mbox_loc_flat" bottom: "conv6_3_norm_mbox_loc_flat" top: "mbox_loc" concat_param { axis: 1 } } layer { name: "mbox_conf" type: "Concat" bottom: "conv3_3_norm_mbox_conf_flat" bottom: "conv4_3_norm_mbox_conf_flat" bottom: "conv5_3_norm_mbox_conf_flat" bottom: "conv6_3_norm_mbox_conf_flat" top: "mbox_conf" concat_param { axis: 1 } } layer { name: "mbox_priorbox" type: "Concat" bottom: "conv3_3_norm_mbox_priorbox" bottom: "conv4_3_norm_mbox_priorbox" bottom: "conv5_3_norm_mbox_priorbox" bottom: "conv6_3_norm_mbox_priorbox" top: "mbox_priorbox" concat_param { axis: 2 } } ##################################################### layer { name: "mbox_loss" type: "MultiBoxLoss" bottom: "mbox_loc" bottom: "mbox_conf" bottom: "mbox_priorbox" bottom: "label" top: "mbox_loss" include { phase: TRAIN } propagate_down: true propagate_down: true propagate_down: false propagate_down: false loss_param { normalization: VALID } multibox_loss_param { loc_loss_type: L2 conf_loss_type: SOFTMAX loc_weight: 1.0 num_classes: 2 share_location: true match_type: PER_PREDICTION overlap_threshold: 0.34999999404 use_prior_for_matching: true background_label_id: 0 use_difficult_gt: true neg_pos_ratio: 3.0 neg_overlap: 0.34999999404 code_type: CENTER_SIZE ignore_cross_boundary_bbox: false mining_type: MAX_NEGATIVE } }