Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
VGG16_mmcv
Commits
dcb646b9
Commit
dcb646b9
authored
Sep 23, 2024
by
dcuai
Browse files
Merge branch 'master' into 'master'
updated readme See merge request
!5
parents
bd51970c
4019f2c8
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
16 additions
and
48 deletions
+16
-48
README.md
README.md
+16
-48
No files found.
README.md
View file @
dcb646b9
...
...
@@ -98,7 +98,7 @@ for tarfile in *.tar; do
done
```
目录结构如下
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于ImageNet,
目录结构如下
```
data
...
...
@@ -114,49 +114,9 @@ data
### Tiny-ImageNet-200
由于ImageNet完整数据集较大,可以使用
[
tiny-imagenet-200
](
http://cs231n.stanford.edu/tiny-imagenet-200.zip
)
进行测试,可于SCNet快速下载
[
tiny-imagenet-200-scnet
](
http://113.200.138.88:18080/aidatasets/project-dependency/tiny-imagenet-200
)
,此时需要对配置脚本进行一些修改:
-
dataset配置文件(configs/
\_\_
base
\_\_
/datasets/{DATASET_CONFIG}.py)中,需要对以下字段进行修改
```
python
# dataset settings
dataset_type
=
'CustomDataset'
# 修改为CustomDataset
data_preprocessor
=
dict
(
num_classes
=
200
,
# 修改类别为200
...
)
...
train_dataloader
=
dict
(
batch_size
=
32
,
num_workers
=
5
,
dataset
=
dict
(
type
=
dataset_type
,
data_root
=
'data/imagenet'
,
data_prefix
=
'train'
,
# 改为data_prefix='train',val_dataloader中同理
pipeline
=
train_pipeline
),
sampler
=
dict
(
type
=
'DefaultSampler'
,
shuffle
=
True
),
)
```
-
model配置文件(configs/
\_\_
base
\_\_
/models/{MODEL_CONFIG}.py)中,同样需要将类别相关的值设置为200。
```
python
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
...
head
=
dict
(
type
=
'LinearClsHead'
,
num_classes
=
200
,
# 将类别数改为200
...
))
```
本仓库的mmpretrain-mmcv中提供了使用tiny-imagenet-200进行训练的若干配置脚本,可参考进行设置。
由于ImageNet完整数据集较大,可以使用
[
tiny-imagenet-200
](
http://cs231n.stanford.edu/tiny-imagenet-200.zip
)
进行测试,可于SCNet快速下载
[
tiny-imagenet-200-scnet
](
http://113.200.138.88:18080/aidatasets/project-dependency/tiny-imagenet-200
)
,此时需要对配置脚本进行一些修改,可参照mmpretrain-mmcv子仓库进行配置,其中提供了使用Tiny-ImageNet-200进行训练的若干配置脚本。
## 训练
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于tiny-imagenet,目录结构如下:
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于Tiny-ImageNet,目录结构如下:
```
data
...
...
@@ -168,25 +128,33 @@ data
└── words.txt
```
##
# 单机8卡
训练
##
训练
-
t
iny-
i
mage
n
et-200
-
T
iny-
I
mage
N
et-200
```
shell
bash tools/dist_train.sh vgg16-test.py 8
```
-
i
mage
n
et
-
I
mage
N
et
```
shell
bash tools/dist_train.sh configs/vgg/vgg16_8xb32_in1k.py 8
```
如需其他卡数训练,将命令中的8改为所需卡数即可;
tips:如需其他卡数训练,将命令中的8改为所需卡数即可;如遇端口占用问题,可在tools/dist_train.sh修改端口。
## Result

如遇端口占用问题,可在tools/dist_train.sh修改端口。
### 精度
测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。
| 卡数 | 精度 |
|:---:|:-----------------------:|
| 8 | top1:0.7162;top5:0.9049 |
## 应用场景
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment