Commit 0bc22e1d authored by wanglch's avatar wanglch
Browse files

Initial commit

parents
# Vary:
**开源多模态OCR大模型**
## 论文
- [论文地址][Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models](https://arxiv.org/abs/2312.06109)
- [Vary weights huggingface 预训练模型下载地址]<https://huggingface.co/Haoran-megvii/Vary> 可联系作者获取模型权重!
`weihaoran18@mails.ucas.ac.cn`
- 本项目提供权重地址为[Here](https://pan.baidu.com/s/1CjlRmq0_q-NSJez2BKrghg),
验证码可在本仓库留言索取。
- [Download the CLIP-VIT-L]<https://huggingface.co/openai/clip-vit-large-patch14/>
## 模型结构
### Vary模型结构
<div align="center">
<img align="center" src=image/model.png>
</div>
## 算法原理
Vary享有两种构象:Vary-tiny 和 Vary-base。我们设计 Vary-tiny 来 “编写”新的视觉词汇,而 Vary-base 则利用新的词汇。具体来说,Vary-tiny 主要由词汇网络和微型 OPT-125M组成。在这两个模块之间,我们添加了一个线性层来对齐通道尺寸。由于 Vary-tiny 主要关注细粒度感知,因此它没有文本输入分支。我们希望新的视觉词汇网络能在处理人工图像(即文档和图表)方面表现出色,以弥补 CLIP 的不足。同时,我们也希望在对自然图像进行标记时,它不会成为 CLIP 的噪音。因此,在生成过程中,我们将人工文档和图表数据作为正样本,将自然图像作为负样本来训练 Vary-tiny。完成上述过程后,我们提取词汇网络并将其添加到一个大型模型中,从而建立 Vary-base。新旧词汇网络享有独立的输入嵌入层,并在 LLM 之前进行整合。在这一阶段,我们冻结新旧视觉词汇网络的权重,并解冻其他模块的权重。
## 环境配置
### Docker(方法一)
注:在部署环境前需将Vary/vary/demo/run_qwen_vary.py和Vary/vary/model/vary_qwen_vary.py中的模型路径改为本地模型路径,同时将模型中的config.json文件中的模型路径改为本地路径,完成以上操作后再执行pip install e .指令。
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu22.04-dtk23.10.1-py310
docker run -it -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro --shm-size=64G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name vary <your imageID> bash
docker exec -it vary bash
cd /path/your_code_data/Vary
pip install e .
pip install ninja
```
### Dockerfile(方法二)
```
cd /path/your_code_data/Vary/docker
docker build --no-cache -t vary:latest .
docker run --shm-size=64G --name vary -v /opt/hyhal:/opt/hyhal:ro --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video -v /path/your_code_data/:/path/your_code_data/ -it vary bash
```
### Anaconda(方法三)
关于本项目DCU显卡所需的特殊深度学习库可从[光合](https://developer.hpccube.com/tool/)开发者社区下载安装。
```
DTK驱动:dtk23.10
python:python3.10
torch:2.1
torchvision: 0.16.0
deepspped: 0.12.3
```
```
conda create -n vary python=3.10
conda activate vary
cd /path/your_code_data/Vary
pip install e .
pip install ninja
```
`Tips:以上dtk驱动、python、torch、deepspeed等DCU相关工具版本需要严格一一对应`
## 数据集
无, 暂未开放数据集
## 训练
需自己构建数据集
1. For Vary-base
```Shell
deepspeed Vary/train/train_qwen_vary.py --deepspeed /Vary/zero_config/zero2.json
--model_name_or_path /Qwen-7B/path/
--vision_tower /vit-large-patch14/path/
--freeze_vision_tower True
--freeze_lm_model False
--vision_select_layer -2
--use_im_start_end True
--bf16 True
--per_device_eval_batch_size 4
--gradient_accumulation_steps 1
--evaluation_strategy "no"
--save_strategy "steps"
--save_steps 5000
--save_total_limit 1
--weight_decay 0.
--warmup_ratio 0.03
--lr_scheduler_type "cosine"
--logging_steps 1 --tf32 True
--model_max_length 4096
--gradient_checkpointing True
--dataloader_num_workers 4
--report_to none
--per_device_train_batch_size 4
--num_train_epochs 1
--learning_rate 5e-5
--datasets data_name1+data_name2+data_name3
--output_dir /path/to/output/
```
2. For Vary-tiny
```Shell
deepspeed Vary/train/train_opt.py --deepspeed /Vary/zero_config/zero2.json
--model_name_or_path /opt125m/path/
--conversation_version opt
--freeze_vision_tower False
--freeze_lm_model False
--use_im_start_end True
--bf16 True
--per_device_eval_batch_size 4
--gradient_accumulation_steps 1
--evaluation_strategy "no"
--save_strategy "steps"
--save_steps 5000
--save_total_limit 1
--weight_decay 0.
--warmup_ratio 0.03
--lr_scheduler_type "cosine"
--logging_steps 1 --tf32 True
--model_max_length 4096
--gradient_checkpointing True
--dataloader_num_workers 4
--report_to none
--per_device_train_batch_size 16
--num_train_epochs 1
--learning_rate 5e-5
--datasets data_name1+data_name2+data_name3
--output_dir /path/to/output/
```
## 推理
**需严格按照本仓库代码目录进行排列**
备注:在run.sh修改 --image-file 替换ocr文件
```
python /home/wanglch/projects/Vary/vary/demo/run_qwen_vary.py --model-name /home/wanglch/projects/Vary/cache/models--HaoranWei--vary-llava80k --image-file /home/wanglch/projects/Vary/image/pic.jpg
```
备注:修改 vary/demo/run_qwen_vary.py 替换57行代码执行不同任务操作
```
qs = 'Provide the ocr results of this image.' # 执行ocr任务
qs = 'Detevate the ** in this image.' # 检测任务
qs = 'Convert the document to markdown format.' # 公式转markdown
qs = 'Describe this image in within 100 words.' # 多模态描述
```
### 推理代码
```
bash run.sh
```
## result
### 英语文档
<div align="center">
<img align="center" src=image/pic3.jpg>
</div>
### 英语文档ocr结果
<div align="center">
<img align="center" src=assets/ocr_en.png>
</div>
### 中文文档
<div align="center">
<img align="center" src=image/pic2.jpg>
</div>
### 中文文档ocr结果
<div align="center">
<img align="center" src=assets/ocr_cn.png>
</div>
### 车牌识别
<div align="center">
<img align="center" src=image/car.png>
</div>
### 车牌识别结果
<div align="center">
<img align="center" src=assets/car_number.png>
</div>
### 内容识别
<div align="center">
<img align="center" src=image/pic.jpg>
</div>
### 内容识别结果
<div align="center">
<img align="center" src=assets/pic_result.png>
</div>
### 精度
## 应用场景
`金融,教育,政府,科研,交通,广媒`
### 算法类别
`图文OCR`
## 预训练权重
- [Vary weights huggingface 预训练模型下载地址]<https://huggingface.co/Haoran-megvii/Vary> 可联系作者获取模型权重!
`weihaoran18@mails.ucas.ac.cn`
- 本项目提供权重地址为[Here](https://pan.baidu.com/s/1CjlRmq0_q-NSJez2BKrghg),
验证码可在本仓库留言索取。
- [Download the CLIP-VIT-L]<https://huggingface.co/openai/clip-vit-large-patch14/>
## 参考资料
- 本项目gitlab地址[Ucas-HaoranWei/Vary](https://github.com/Ucas-HaoranWei/Vary)
<h3><a href="">Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models</a></h3>
<a href="https://varybase.github.io/"><img src="https://img.shields.io/badge/Project-Page-Green"></a>
<a href="https://arxiv.org/abs/2312.06109"><img src="https://img.shields.io/badge/Paper-PDF-orange"></a>
<a href="http://region-31.seetacloud.com:22701/"><img src="https://img.shields.io/badge/demo-blue"></a>
<a href="https://zhuanlan.zhihu.com/p/671420712"><img src="https://img.shields.io/badge/zhihu-yellow"></a>
[Haoran Wei*](https://scholar.google.com/citations?user=J4naK0MAAAAJ&hl=en), Lingyu Kong*, Jinyue Chen, Liang Zhao, [Zheng Ge](https://joker316701882.github.io/), [Jinrong Yang](https://yancie-yjr.github.io/), [Jianjian Sun](https://scholar.google.com/citations?user=MVZrGkYAAAAJ&hl=en), Chunrui Han, [Xiangyu Zhang](https://scholar.google.com/citations?user=yuB-cfoAAAAJ&hl=en)
<p align="center">
<img src="assets/logo.jpg" style="width: 200px" align=center>
</p>
## Release
- [2024/4/21] 🔥🔥🔥 For OneChart, we have released the web demo in [Project Page](https://onechartt.github.io/). Have fun!!
- [2024/4/21] 🔥🔥🔥 We present a Vary-tiny LAVIS codebase (for training from scratch) and the Vary-600k dataset (300K English and 300K Chinese pages) [here](https://github.com/Ucas-HaoranWei/Vary-tiny-600k) !!!
- [2024/4/15]🔥🔥🔥We release a chart parsing model OneChart [here](https://github.com/LingyvKong/OneChart).
- [2024/4/12]🔥🔥🔥We will release a chart parsing model based on Vary-tiny next week. The model supports both English and Chinese charts.
- [2024/3/16]🔥🔥🔥I found many friends very interested in Vary-tiny(OPT-125M), so I opened source it [here](https://huggingface.co/HaoranWei/Vary-tiny-opt125M/tree/main), a PDF-dense OCR and object detection version.
- [2023/1/23]🔥🔥🔥We release the Vary-toy [here](https://github.com/Ucas-HaoranWei/Vary-toy). Besides, we show the super good Vary-family results [here](https://github.com/Ucas-HaoranWei/Vary-family).
- [2023/12/29]🔥🔥🔥We will release a new model (a small-size Vary, about 2B) at the beginning of next month and introduce a new feature (object detection). Our online demo will be temporarily closed to prepare for the deployment of the new model.
- [2023/12/11] We released the online demo, have fun!
- [2023/12/11] We released the codes of Vary (train and inference)!
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
[![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE)
**Usage and License Notices**: The data, code, and checkpoint are intended and licensed for research use only. They are also restricted to use that follow the license agreement of LLaMA, Vicuna, GPT-4, Qwen, and LLaVA.
## Contents
- [Install](#install)
- [Vary Weights](#vary-weights)
- [Demo](#Demo)
- [Train](#train)
## Install
1. Clone this repository and navigate to the Vary folder
```bash
git clone https://github.com/Ucas-HaoranWei/Vary.git
cd Vary
```
2. Install Package
```Shell
conda create -n vary python=3.10 -y
conda activate vary
pip install e .
```
3. Install Flash-Attention
```
pip install ninja
pip install flash-attn --no-build-isolation
```
## Vary Weights
- If you are in urgent need of weights for your research recently, please contact me by email.
- Download the CLIP-VIT-L in [Hugging Face](https://huggingface.co/openai/clip-vit-large-patch14/tree/main)
## Demo
1. Update the CLIP-VIT path in the codes (/cache/vit-large-patch14/) to your path.
2.
```Shell
python vary/demo/run_qwen_vary.py --model-name /vary/model/path/ --image-file /an/image/file.png
```
## Train
- We currently do not plan to open source the weights of the intermediate.
- However, we release the train codes. So you can train on your own dataset.
If you want to do this, you can try this:
1. For Vary-base (one machine, if you have multiple machines you need to prepare your host file)
```Shell
deepspeed Vary/train/train_qwen_vary.py --deepspeed /Vary/zero_config/zero2.json
--model_name_or_path /Qwen-7B/path/
--vision_tower /vit-large-patch14/path/
--freeze_vision_tower True
--freeze_lm_model False
--vision_select_layer -2
--use_im_start_end True
--bf16 True
--per_device_eval_batch_size 4
--gradient_accumulation_steps 1
--evaluation_strategy "no"
--save_strategy "steps"
--save_steps 5000
--save_total_limit 1
--weight_decay 0.
--warmup_ratio 0.03
--lr_scheduler_type "cosine"
--logging_steps 1 --tf32 True
--model_max_length 4096
--gradient_checkpointing True
--dataloader_num_workers 4
--report_to none
--per_device_train_batch_size 4
--num_train_epochs 1
--learning_rate 5e-5
--datasets data_name1+data_name2+data_name3
--output_dir /path/to/output/
```
2. For Vary-tiny
```Shell
deepspeed Vary/train/train_opt.py --deepspeed /Vary/zero_config/zero2.json
--model_name_or_path /opt125m/path/
--conversation_version opt
--freeze_vision_tower False
--freeze_lm_model False
--use_im_start_end True
--bf16 True
--per_device_eval_batch_size 4
--gradient_accumulation_steps 1
--evaluation_strategy "no"
--save_strategy "steps"
--save_steps 5000
--save_total_limit 1
--weight_decay 0.
--warmup_ratio 0.03
--lr_scheduler_type "cosine"
--logging_steps 1 --tf32 True
--model_max_length 4096
--gradient_checkpointing True
--dataloader_num_workers 4
--report_to none
--per_device_train_batch_size 16
--num_train_epochs 1
--learning_rate 5e-5
--datasets data_name1+data_name2+data_name3
--output_dir /path/to/output/
```
## Contact
If you have any questions related to the code or the paper, feel free to email (`weihaoran18@mails.ucas.ac.cn`).
## Acknowledgement
- [LLaVA](https://github.com/lm-sys/FastChat): the codebase we built upon!
- [Qwen](https://github.com/QwenLM/Qwen): the LLM base model of Vary, which is good at both English and Chinese!
## Citation
If you find our work useful in your research, please consider citing Vary:
```bibtex
@article{wei2023vary,
title={Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models},
author={Wei, Haoran and Kong, Lingyu and Chen, Jinyue and Zhao, Liang and Ge, Zheng and Yang, Jinrong and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
journal={arXiv preprint arXiv:2312.06109},
year={2023}
}
@article{wei2024small,
title={Small Language Model Meets with Reinforced Vision Vocabulary},
author={Wei, Haoran and Kong, Lingyu and Chen, Jinyue and Zhao, Liang and Ge, Zheng and Yu, En and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
journal={arXiv preprint arXiv:2401.12503},
year={2024}
}
```
File added
{
"_name_or_path": "/Vary/cache/models--HaoranWei--vary-llava80k/",
"architectures": [
"MMGPTQwenForCausalLM"
],
"attn_dropout_prob": 0.0,
"auto_map": {
"AutoConfig": "configuration_qwen.QWenConfig",
"AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
},
"bf16": false,
"emb_dropout_prob": 0.0,
"fp16": false,
"fp32": false,
"freeze_vision_tower": false,
"hidden_size": 4096,
"im_end_token": 151858,
"im_patch_token": 151859,
"im_start_token": 151857,
"image_token_len": 256,
"initializer_range": 0.02,
"intermediate_size": 22016,
"kv_channels": 128,
"layer_norm_epsilon": 1e-06,
"max_position_embeddings": 8192,
"model_type": "mmgpt",
"no_bias": true,
"num_attention_heads": 32,
"num_hidden_layers": 32,
"onnx_safe": null,
"rotary_emb_base": 10000,
"rotary_pct": 1.0,
"scale_attn_weights": true,
"seq_length": 2048,
"tie_word_embeddings": false,
"tokenizer_type": "QWenTokenizer",
"torch_dtype": "bfloat16",
"transformers_version": "4.32.1",
"use_cache": true,
"use_dynamic_ntk": true,
"use_flash_attn": false,
"use_im_start_end": true,
"use_logn_attn": true,
"vision_select_layer": -2,
"vision_tower": "/mnt/host0/vit-large-patch14",
"visual": {
"heads": 16,
"image_size": 448,
"image_start_id": 151857,
"layers": 48,
"mlp_ratio": 4.9231,
"output_dim": 4096,
"patch_size": 14,
"width": 1664
},
"vocab_size": 151860
}
{
"chat_format": "chatml",
"do_sample": true,
"eos_token_id": 151643,
"max_new_tokens": 512,
"max_window_size": 6144,
"pad_token_id": 151643,
"top_k": 0,
"top_p": 0.4,
"transformers_version": "4.32.1"
}
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Tokenization classes for QWen."""
import base64
import logging
import os
import unicodedata
from typing import Collection, Dict, List, Set, Tuple, Union
import tiktoken
from transformers import PreTrainedTokenizer, AddedToken
logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
ENDOFTEXT = "<|endoftext|>"
IMSTART = "<|im_start|>"
IMEND = "<|im_end|>"
# as the default behavior is changed to allow special tokens in
# regular texts, the surface forms of special tokens need to be
# as different as possible to minimize the impact
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
SPECIAL_TOKENS = (
ENDOFTEXT,
IMSTART,
IMEND,
) + EXTRAS
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
with open(tiktoken_bpe_file, "rb") as f:
contents = f.read()
return {
base64.b64decode(token): int(rank)
for token, rank in (line.split() for line in contents.splitlines() if line)
}
class QWenTokenizer(PreTrainedTokenizer):
"""QWen tokenizer."""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
errors="replace",
image_start_tag='<img>',
image_end_tag='</img>',
image_pad_tag='<imgpad>',
ref_start_tag='<ref>',
ref_end_tag='</ref>',
box_start_tag='<box>',
box_end_tag='</box>',
quad_start_tag='<quad>',
quad_end_tag='</quad>',
**kwargs,
):
super().__init__(**kwargs)
self.image_start_tag = image_start_tag
self.image_end_tag = image_end_tag
self.image_pad_tag = image_pad_tag
self.ref_start_tag = ref_start_tag
self.ref_end_tag = ref_end_tag
self.box_start_tag = box_start_tag
self.box_end_tag = box_end_tag
self.quad_start_tag = quad_start_tag
self.quad_end_tag = quad_end_tag
self.IMAGE_ST = (
ref_start_tag, ref_end_tag,
box_start_tag, box_end_tag,
quad_start_tag, quad_end_tag,
image_start_tag, image_end_tag,
image_pad_tag
)
self.errors = errors # how to handle errors in decoding
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
self.special_tokens = {
token: index
for index, token in enumerate(
SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
)
}
self.img_start_id = self.special_tokens[self.image_start_tag]
self.img_end_id = self.special_tokens[self.image_end_tag]
self.img_pad_id = self.special_tokens[self.image_pad_tag]
self.ref_start_id = self.special_tokens[self.ref_start_tag]
self.ref_end_id = self.special_tokens[self.ref_end_tag]
self.box_start_id = self.special_tokens[self.box_start_tag]
self.box_end_id = self.special_tokens[self.box_end_tag]
self.quad_start_id = self.special_tokens[self.quad_start_tag]
self.quad_end_id = self.special_tokens[self.quad_end_tag]
enc = tiktoken.Encoding(
"Qwen",
pat_str=PAT_STR,
mergeable_ranks=self.mergeable_ranks,
special_tokens=self.special_tokens,
)
assert (
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
self.decoder = {
v: k for k, v in self.mergeable_ranks.items()
} # type: dict[int, bytes|str]
self.decoder.update({v: k for k, v in self.special_tokens.items()})
self.tokenizer = enc # type: tiktoken.Encoding
self.eod_id = self.tokenizer.eot_token
self.im_start_id = self.special_tokens[IMSTART]
self.im_end_id = self.special_tokens[IMEND]
def __len__(self) -> int:
return self.tokenizer.n_vocab
def get_vocab(self) -> Dict[bytes, int]:
return self.mergeable_ranks
def convert_tokens_to_ids(
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
) -> List[int]:
ids = []
if isinstance(tokens, (str, bytes)):
if tokens in self.special_tokens:
return self.special_tokens[tokens]
else:
return self.mergeable_ranks.get(tokens)
for token in tokens:
if token in self.special_tokens:
ids.append(self.special_tokens[token])
else:
ids.append(self.mergeable_ranks.get(token))
return ids
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
if not special_tokens and new_tokens:
raise ValueError('Adding regular tokens is not supported')
for token in new_tokens:
surface_form = token.content if isinstance(token, AddedToken) else token
if surface_form not in SPECIAL_TOKENS:
raise ValueError('Adding unknown special tokens is not supported')
return 0
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
"""
Save only the vocabulary of the tokenizer (vocabulary).
Returns:
`Tuple(str)`: Paths to the files saved.
"""
file_path = os.path.join(save_directory, "qwen.tiktoken")
with open(file_path, "w", encoding="utf8") as w:
for k, v in self.mergeable_ranks.items():
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
w.write(line)
return (file_path,)
def tokenize(
self,
text: str,
allowed_special: Union[Set, str] = "all",
disallowed_special: Union[Collection, str] = (),
**kwargs,
) -> List[Union[bytes, str]]:
"""
Converts a string in a sequence of tokens.
Args:
text (`str`):
The sequence to be encoded.
allowed_special (`Literal["all"]` or `set`):
The surface forms of the tokens to be encoded as special tokens in regular texts.
Default to "all".
disallowed_special (`Literal["all"]` or `Collection`):
The surface forms of the tokens that should not be in regular texts and trigger errors.
Default to an empty tuple.
kwargs (additional keyword arguments, *optional*):
Will be passed to the underlying model specific encode method.
Returns:
`List[bytes|str]`: The list of tokens.
"""
tokens = []
text = unicodedata.normalize("NFC", text)
# this implementation takes a detour: text -> token id -> token surface forms
for t in self.tokenizer.encode(
text, allowed_special=allowed_special, disallowed_special=disallowed_special
):
tokens.append(self.decoder[t])
return tokens
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
"""
Converts a sequence of tokens in a single string.
"""
text = ""
temp = b""
for t in tokens:
if isinstance(t, str):
if temp:
text += temp.decode("utf-8", errors=self.errors)
temp = b""
text += t
elif isinstance(t, bytes):
temp += t
else:
raise TypeError("token should only be of type types or str")
if temp:
text += temp.decode("utf-8", errors=self.errors)
return text
@property
def vocab_size(self):
return self.tokenizer.n_vocab
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
"""Converts an id to a token, special tokens included"""
if index in self.decoder:
return self.decoder[index]
raise ValueError("unknown ids")
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
"""Converts a token to an id using the vocab, special tokens included"""
if token in self.special_tokens:
return self.special_tokens[token]
if token in self.mergeable_ranks:
return self.mergeable_ranks[token]
raise ValueError("unknown token")
def _tokenize(self, text: str, **kwargs):
"""
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
Do NOT take care of added tokens.
"""
raise NotImplementedError
def _decode(
self,
token_ids: Union[int, List[int]],
skip_special_tokens: bool = False,
errors: str = None,
**kwargs,
) -> str:
if isinstance(token_ids, int):
token_ids = [token_ids]
if skip_special_tokens:
token_ids = [i for i in token_ids if i < self.eod_id]
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
{
"auto_map": {
"AutoTokenizer": [
"tokenization_qwen.QWenTokenizer",
null
]
},
"clean_up_tokenization_spaces": true,
"model_max_length": 4096,
"padding_side": "right",
"tokenizer_class": "QWenTokenizer"
}
This diff is collapsed.
---
tags:
- vision
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
candidate_labels: playing music, playing sports
example_title: Cat & Dog
---
# Model Card: CLIP
Disclaimer: The model card is taken and modified from the official CLIP repository, it can be found [here](https://github.com/openai/CLIP/blob/main/model-card.md).
## Model Details
The CLIP model was developed by researchers at OpenAI to learn about what contributes to robustness in computer vision tasks. The model was also developed to test the ability of models to generalize to arbitrary image classification tasks in a zero-shot manner. It was not developed for general model deployment - to deploy models like CLIP, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within.
### Model Date
January 2021
### Model Type
The base model uses a ViT-L/14 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss.
The original implementation had two variants: one using a ResNet image encoder and the other using a Vision Transformer. This repository has the variant with the Vision Transformer.
### Documents
- [Blog Post](https://openai.com/blog/clip/)
- [CLIP Paper](https://arxiv.org/abs/2103.00020)
### Use with Transformers
```python
from PIL import Image
import requests
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```
## Model Use
### Intended Use
The model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such models - the CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis.
#### Primary intended uses
The primary intended users of these models are AI researchers.
We primarily imagine the model will be used by researchers to better understand robustness, generalization, and other capabilities, biases, and constraints of computer vision models.
### Out-of-Scope Use Cases
**Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.
Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases.
## Data
The model was trained on publicly available image-caption data. This was done through a combination of crawling a handful of websites and using commonly-used pre-existing image datasets such as [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). A large portion of the data comes from our crawling of the internet. This means that the data is more representative of people and societies most connected to the internet which tend to skew towards more developed nations, and younger, male users.
### Data Mission Statement
Our goal with building this dataset was to test out robustness and generalizability in computer vision tasks. As a result, the focus was on gathering large quantities of data from different publicly-available internet data sources. The data was gathered in a mostly non-interventionist manner. However, we only crawled websites that had policies against excessively violent and adult images and allowed us to filter out such content. We do not intend for this dataset to be used as the basis for any commercial or deployed model and will not be releasing the dataset.
## Performance and Limitations
### Performance
We have evaluated the performance of CLIP on a wide range of benchmarks across a variety of computer vision datasets such as OCR to texture recognition to fine-grained classification. The paper describes model performance on the following datasets:
- Food101
- CIFAR10
- CIFAR100
- Birdsnap
- SUN397
- Stanford Cars
- FGVC Aircraft
- VOC2007
- DTD
- Oxford-IIIT Pet dataset
- Caltech101
- Flowers102
- MNIST
- SVHN
- IIIT5K
- Hateful Memes
- SST-2
- UCF101
- Kinetics700
- Country211
- CLEVR Counting
- KITTI Distance
- STL-10
- RareAct
- Flickr30
- MSCOCO
- ImageNet
- ImageNet-A
- ImageNet-R
- ImageNet Sketch
- ObjectNet (ImageNet Overlap)
- Youtube-BB
- ImageNet-Vid
## Limitations
CLIP and our analysis of it have a number of limitations. CLIP currently struggles with respect to certain tasks such as fine grained classification and counting objects. CLIP also poses issues with regards to fairness and bias which we discuss in the paper and briefly in the next section. Additionally, our approach to testing CLIP also has an important limitation- in many cases we have used linear probes to evaluate the performance of CLIP and there is evidence suggesting that linear probes can underestimate model performance.
### Bias and Fairness
We find that the performance of CLIP - and the specific biases it exhibits - can depend significantly on class design and the choices one makes for categories to include and exclude. We tested the risk of certain kinds of denigration with CLIP by classifying images of people from [Fairface](https://arxiv.org/abs/1908.04913) into crime-related and non-human animal categories. We found significant disparities with respect to race and gender. Additionally, we found that these disparities could shift based on how the classes were constructed. (Details captured in the Broader Impacts Section in the paper).
We also tested the performance of CLIP on gender, race and age classification using the Fairface dataset (We default to using race categories as they are constructed in the Fairface dataset.) in order to assess quality of performance across different demographics. We found accuracy >96% across all races for gender classification with ‘Middle Eastern’ having the highest accuracy (98.4%) and ‘White’ having the lowest (96.5%). Additionally, CLIP averaged ~93% for racial classification and ~63% for age classification. Our use of evaluations to test for gender, race and age classification as well as denigration harms is simply to evaluate performance of the model across people and surface potential risks and not to demonstrate an endorsement/enthusiasm for such tasks.
## Feedback
### Where to send questions or comments about the model
Please use [this Google Form](https://forms.gle/Uv7afRH5dvY34ZEs9)
\ No newline at end of file
{
"_name_or_path": "/Vary/cache/vit-large-patch14/",
"architectures": [
"CLIPModel"
],
"initializer_factor": 1.0,
"logit_scale_init_value": 2.6592,
"model_type": "clip",
"projection_dim": 768,
"text_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"bos_token_id": 0,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"dropout": 0.0,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 2,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 77,
"min_length": 0,
"model_type": "clip_text_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 12,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 12,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": 1,
"prefix": null,
"problem_type": null,
"projection_dim" : 768,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"task_specific_params": null,
"temperature": 1.0,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.16.0.dev0",
"use_bfloat16": false,
"vocab_size": 49408
},
"text_config_dict": {
"hidden_size": 768,
"intermediate_size": 3072,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"projection_dim": 768
},
"torch_dtype": "float32",
"transformers_version": null,
"vision_config": {
"_name_or_path": "",
"add_cross_attention": false,
"architectures": null,
"attention_dropout": 0.0,
"bad_words_ids": null,
"bos_token_id": null,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"dropout": 0.0,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "quick_gelu",
"hidden_size": 1024,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"image_size": 224,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"min_length": 0,
"model_type": "clip_vision_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 16,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 24,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": null,
"patch_size": 14,
"prefix": null,
"problem_type": null,
"projection_dim" : 768,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"sep_token_id": null,
"task_specific_params": null,
"temperature": 1.0,
"tie_encoder_decoder": false,
"tie_word_embeddings": true,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": null,
"torchscript": false,
"transformers_version": "4.16.0.dev0",
"use_bfloat16": false
},
"vision_config_dict": {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment