"docs/vscode:/vscode.git/clone" did not exist on "7ac3e2e237e443baf91dfbf9893fca114c1c6001"
Commit bffed0fe authored by dengjb's avatar dengjb
Browse files

update

parents
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Donut Swin Transformer model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class UnimerNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`UnimerNetModel`]. It is used to instantiate a
Donut model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Donut
[naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 4):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embed_dim (`int`, *optional*, defaults to 96):
Dimensionality of patch embedding.
depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
Depth of each layer in the Transformer encoder.
num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
Number of attention heads in each layer of the Transformer encoder.
window_size (`int`, *optional*, defaults to 7):
Size of windows.
mlp_ratio (`float`, *optional*, defaults to 4.0):
Ratio of MLP hidden dimensionality to embedding dimensionality.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether or not a learnable bias should be added to the queries, keys and values.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings and encoder.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
drop_path_rate (`float`, *optional*, defaults to 0.1):
Stochastic depth rate.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to add absolute position embeddings to the patch embeddings.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
Example:
```python
>>> from transformers import UnimerNetConfig, UnimerNetModel
>>> # Initializing a Donut naver-clova-ix/donut-base style configuration
>>> configuration = UnimerNetConfig()
>>> # Randomly initializing a model from the naver-clova-ix/donut-base style configuration
>>> model = UnimerNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "donut-swin"
attribute_map = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
image_size=224,
patch_size=4,
num_channels=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.0,
qkv_bias=True,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
drop_path_rate=0.1,
hidden_act="gelu",
use_absolute_embeddings=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.depths = depths
self.num_layers = len(depths)
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_absolute_embeddings = use_absolute_embeddings
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
from ftfy import fix_text
from torch.nn import CrossEntropyLoss
from typing import Optional, Tuple, Union, List
from dataclasses import dataclass
import math
from transformers import PreTrainedTokenizerFast
from transformers import VisionEncoderDecoderConfig
from transformers import AutoModel, VisionEncoderDecoderModel, AutoImageProcessor, MBartForCausalLM
from unimernet.models.unimernet.processor import VariableDonutProcessor, VariableDonutImageProcessor
# from transformers.models.mbart.modeling_mbart import MBartDecoder
from transformers.models.vision_encoder_decoder.modeling_vision_encoder_decoder import shift_tokens_right
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput, CausalLMOutputWithCrossAttentions, BaseModelOutputWithPastAndCrossAttentions
# from transformers.models.donut.modeling_donut_swin import DonutSwinPatchEmbeddings, DonutSwinEmbeddings, DonutSwinModel, DonutSwinEncoder
from transformers.utils import logging, ModelOutput
from functools import partial
from .configuration_unimernet_encoder import UnimerNetConfig
from .modeling_unimernet_encoder import UnimerNetPatchEmbeddings, UnimerNetEmbeddings, UnimerNetModel, UnimerNetEncoder
from .modeling_unimernet_decoder import MBartDecoder
logger = logging.get_logger(__name__)
class VariableUnimerNetConfig(UnimerNetConfig):
pass
def build_norm_layer(dim,
norm_layer,):
layers = []
if norm_layer == 'BN':
layers.append(nn.BatchNorm2d(dim))
else:
raise NotImplementedError(
f'build_norm_layer does not support {norm_layer}')
return nn.Sequential(*layers)
class StemLayer(nn.Module):
r""" Stem layer of InternImage
Args:
in_chans (int): number of input channels
out_chans (int): number of output channels
act_layer (str): activation layer
norm_layer (str): normalization layer
"""
def __init__(self,
in_chans=3,
out_chans=96,
act_layer=nn.GELU,
norm_layer='BN'):
super().__init__()
self.conv1 = nn.Conv2d(in_chans,
out_chans // 2,
kernel_size=3,
stride=2,
padding=1)
self.norm1 = build_norm_layer(out_chans // 2, norm_layer)
self.act = act_layer()
self.conv2 = nn.Conv2d(out_chans // 2,
out_chans,
kernel_size=3,
stride=2,
padding=1)
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.act(x)
x = self.conv2(x)
return x
class VariableUnimerNetPatchEmbeddings(UnimerNetPatchEmbeddings):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
print("VariableUnimerNetPatchEmbeddings init")
super().__init__(config)
num_channels, hidden_size = config.num_channels, config.embed_dim
self.projection = StemLayer(in_chans=num_channels, out_chans=hidden_size)
class VariableUnimerNetEmbeddings(UnimerNetEmbeddings):
"""
Construct the patch and position embeddings. Optionally, also the mask token.
"""
def __init__(self, config, use_mask_token=False):
super().__init__(config, use_mask_token)
self.patch_embeddings = VariableUnimerNetPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.patch_grid = self.patch_embeddings.grid_size
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
self.position_embeddings = None
if config.use_absolute_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim))
self.row_embeddings = None
self.column_embeddings = None
if config.use_2d_embeddings:
self.row_embeddings = nn.Parameter(torch.zeros(1, self.patch_grid[0] + 1, config.embed_dim))
self.column_embeddings = nn.Parameter(torch.zeros(1, self.patch_grid[1] + 1, config.embed_dim))
self.norm = nn.LayerNorm(config.embed_dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False,
) -> Tuple[torch.Tensor]:
# print('before pixel_values.shape',pixel_values.shape)
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
# print('after embeddings.shape',embeddings.shape)
# Layernorm across the last dimension (each patch is a single row)
embeddings = self.norm(embeddings)
batch_size, seq_len, embed_dim = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
if self.position_embeddings is not None:
embeddings = embeddings + self.position_embeddings[:, :seq_len, :]
if self.row_embeddings is not None and self.column_embeddings is not None:
# Repeat the x position embeddings across the y axis like 0, 1, 2, 3, 0, 1, 2, 3, ...
row_embeddings = self.row_embeddings[:, :output_dimensions[0], :].repeat_interleave(output_dimensions[1],
dim=1)
column_embeddings = self.column_embeddings[:, :output_dimensions[1], :].repeat(1, output_dimensions[0], 1)
embeddings = embeddings + row_embeddings + column_embeddings
embeddings = self.dropout(embeddings)
return embeddings, output_dimensions
class VariableUnimerNetModel(UnimerNetModel):
config_class = VariableUnimerNetConfig
def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
print("VariableUnimerNetModel init")
super().__init__(config)
self.config = config
self.num_layers = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
self.embeddings = VariableUnimerNetEmbeddings(config, use_mask_token=use_mask_token)
self.encoder = UnimerNetEncoder(config, self.embeddings.patch_grid)
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
@dataclass
class CausalLMOutputWithCrossAttentionsAndCounting(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
counting: Optional[torch.FloatTensor] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class CustomMBartDecoder(MBartDecoder):
def __init__(self, config):
print("CustomMBartDecoder init")
super().__init__(config)
hidden_size = config.d_model
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
count_pred: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
if self._use_flash_attention_2:
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
# TODO: add counting context weight to hidden_states
if count_pred is not None:
count_context_weight = self.counting_context_weight(count_pred)
hidden_states = hidden_states + 0.5 * count_context_weight.unsqueeze(1)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {attn_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
class CustomMBartForCausalLM(MBartForCausalLM):
def __init__(self, config):
print("CustomMBartForCausalLM init")
super().__init__(config)
# Modify the decoder within MBartDecoderWrapper
self.model.decoder = CustomMBartDecoder(config)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
count_gt: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MBartForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
count_pred = None
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
count_pred=count_pred,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits, count_pred) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentionsAndCounting(
loss=loss,
logits=logits,
counting=count_pred,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
class CustomVisionEncoderDecoderModel(VisionEncoderDecoderModel):
def __init__(self, config):
print("CustomVisionEncoderDecoderModel init")
super().__init__(config)
# Replace the MBartForCausalLM with your CustomMBartForCausalLM
self.encoder = VariableUnimerNetModel(config.encoder)
self.decoder = CustomMBartForCausalLM(self.config.decoder)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, VisionEncoderDecoderModel
>>> import requests
>>> from PIL import Image
>>> import torch
>>> processor = AutoProcessor.from_pretrained("microsoft/trocr-base-handwritten")
>>> model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
>>> # load image from the IAM dataset
>>> url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
>>> # training
>>> model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
>>> model.config.pad_token_id = processor.tokenizer.pad_token_id
>>> model.config.vocab_size = model.config.decoder.vocab_size
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
>>> text = "hello world"
>>> labels = processor.tokenizer(text, return_tensors="pt").input_ids
>>> outputs = model(pixel_values=pixel_values, labels=labels)
>>> loss = outputs.loss
>>> # inference (generation)
>>> generated_ids = model.generate(pixel_values)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if encoder_outputs is None:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_encoder,
)
elif isinstance(encoder_outputs, tuple):
encoder_outputs = BaseModelOutput(*encoder_outputs)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
# else:
encoder_attention_mask = None
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
# Compute loss independent from decoder (as some shift the logits inside them)
loss = None
if labels is not None:
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
count_gt = kwargs_decoder.get("count_gt", None)
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class SelfAttentionBlock(nn.Module):
def __init__(self, embed_size, num_heads):
super(SelfAttentionBlock, self).__init__()
self.self_attention = nn.MultiheadAttention(embed_dim=embed_size, num_heads=num_heads)
self.norm = nn.LayerNorm(embed_size)
def forward(self, x):
attn_output, _ = self.self_attention(x, x, x)
x = self.norm(attn_output + x)
return x
class DonutEncoderDecoder(nn.Module):
def __init__(self, model_name, num_tokens, pad_token_id, bos_token_id, eos_token_id):
super().__init__()
config = VisionEncoderDecoderConfig.from_pretrained(model_name)
encoder_config = vars(config.encoder)
encoder = VariableUnimerNetConfig(**encoder_config)
config.encoder = encoder
self.config = config
AutoModel.register(VariableUnimerNetConfig, VariableUnimerNetModel)
self.model = CustomVisionEncoderDecoderModel(config=self.config)
self.model.config.decoder_start_token_id = bos_token_id
self.model.config.pad_token_id = pad_token_id
self.model.config.eos_token_id = eos_token_id
self.model.decoder.resize_token_embeddings(num_tokens)
self.pad_token_id = pad_token_id
def forward(self, pixel_values, decoder_input_ids, decoder_attention_mask, **kwargs):
num_channels = pixel_values.shape[1]
if num_channels == 1:
pixel_values = pixel_values.repeat(1, 3, 1, 1)
labels = decoder_input_ids * 1
labels = labels.masked_fill(labels == self.pad_token_id, -100)
loss = self.model(
pixel_values=pixel_values,
decoder_input_ids=decoder_input_ids[:, :-1],
decoder_attention_mask=decoder_attention_mask[:, :-1],
labels=labels[:, 1:],
**kwargs
).loss
return loss
@torch.no_grad()
def generate(self, pixel_values, temperature, max_new_tokens, decoder_start_token_id, do_sample, top_p,
**kwargs):
num_channels = pixel_values.shape[1]
if num_channels == 1:
pixel_values = pixel_values.repeat(1, 3, 1, 1)
outputs = self.model.generate(
pixel_values=pixel_values,
max_new_tokens=max_new_tokens,
decoder_start_token_id=decoder_start_token_id,
temperature=temperature,
do_sample=do_sample,
top_p=top_p,
)
return outputs[:, 1:]
class DonutTokenizer:
def __init__(self, path):
AutoImageProcessor.register(VariableUnimerNetConfig, VariableDonutImageProcessor)
processor = VariableDonutProcessor.from_pretrained(path)
processor.train = False
self.tokenizer = processor.tokenizer
self.max_seq_len = 2048
self.pad_token_id = self.tokenizer.pad_token_id
self.bos_token_id = self.tokenizer.bos_token_id
self.eos_token_id = self.tokenizer.eos_token_id
def __len__(self):
return len(self.tokenizer)
def tokenize(self, texts, max_length=None):
if not max_length:
max_length = self.max_seq_len
text_inputs = self.tokenizer(
texts,
return_token_type_ids=False,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=max_length,
)
return text_inputs
@staticmethod
def post_process(text):
text = fix_text(text)
return text
def token2str(self, tokens) -> list:
generated_text = self.tokenizer.batch_decode(tokens, skip_special_tokens=True)
generated_text = [self.post_process(text) for text in generated_text]
return generated_text
def detokenize(self, tokens):
toks = [self.tokenizer.convert_ids_to_tokens(tok) for tok in tokens]
for b in range(len(toks)):
for i in reversed(range(len(toks[b]))):
if toks[b][i] is None:
toks[b][i] = ''
toks[b][i] = toks[b][i].replace('Ġ', ' ').strip()
if toks[b][i] in ([self.tokenizer.bos_token, self.tokenizer.eos_token, self.tokenizer.pad_token]):
del toks[b][i]
return toks
# coding=utf-8
# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MBART model."""
import copy
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from .configuration_unimernet_decoder import MBartConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25"
_CONFIG_FOR_DOC = "MBartConfig"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int):
"""
Shift input ids one token to the right, and wrap the last non pad token (the <LID> token) Note that MBart does not
have a single `decoder_start_token_id` in contrast to other Bart-like models.
"""
prev_output_tokens = input_ids.clone()
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
prev_output_tokens.masked_fill_(prev_output_tokens == -100, pad_token_id)
index_of_eos = (prev_output_tokens.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
decoder_start_tokens = prev_output_tokens.gather(1, index_of_eos).squeeze()
prev_output_tokens[:, 1:] = prev_output_tokens[:, :-1].clone()
prev_output_tokens[:, 0] = decoder_start_tokens
return prev_output_tokens
# Copied from transformers.models.bart.modeling_bart.BartLearnedPositionalEmbedding with Bart->MBart
class MBartLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# MBart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
"""`input_ids' shape is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids.shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
).expand(bsz, -1)
return super().forward(positions + self.offset)
# Copied from transformers.models.bart.modeling_bart.BartScaledWordEmbedding with Bart->MBart
class MBartScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->MBart
class MBartSqueezeAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper, with qk_squeeze"""
def __init__(
self,
embed_dim: int,
num_heads: int,
qk_squeeze: int = 2,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[MBartConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.squeeze_dim = embed_dim // qk_squeeze
self.squeeze_head_dim = self.squeeze_dim // num_heads
self.scaling = self.squeeze_head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, self.squeeze_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, self.squeeze_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape_qk(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.squeeze_head_dim).transpose(1, 2).contiguous()
def _shape_v(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape_qk(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape_v(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape_qk(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape_v(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape_qk(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape_v(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.squeeze_head_dim)
value_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape_qk(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*value_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->MBart
class MBartFlashAttention2(MBartSqueezeAttention):
"""
MBart flash attention module. This module inherits from `MBartSqueezeAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# MBartFlashAttention2 attention does not support output_attentions
if output_attentions:
raise ValueError("MBartFlashAttention2 attention does not support output_attentions")
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, q_len, _ = hidden_states.size()
# get query proj
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0].transpose(1, 2)
value_states = past_key_value[1].transpose(1, 2)
elif is_cross_attention:
# cross_attentions
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
else:
# self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(
query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout
)
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`float`):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
)
return attn_output
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
MBART_ATTENTION_CLASSES = {
"eager": MBartSqueezeAttention,
"flash_attention_2": MBartFlashAttention2,
}
class MBartEncoderLayer(nn.Module):
def __init__(self, config: MBartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class MBartDecoderLayer(nn.Module):
def __init__(self, config: MBartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = MBART_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->MBart
class MBartClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class MBartPreTrainedModel(PreTrainedModel):
config_class = MBartConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MBartDecoderLayer", "MBartSqueezeAttention"]
_supports_flash_attn_2 = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
MBART_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MBartConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MBART_GENERATION_EXAMPLE = r"""
Translation example:
```python
>>> from transformers import AutoTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro")
>>> example_english_phrase = "42 is the answer"
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt")
>>> # Translate
>>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'42 este răspuns'
```
Mask filling example:
```python
>>> from transformers import AutoTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
['nett', 'sehr', 'ganz', 'nicht', 'so']
```
"""
MBART_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that
varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class MBartEncoder(MBartPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`MBartEncoderLayer`].
Args:
config: MBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = MBartScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([MBartEncoderLayer(config) for _ in range(config.encoder_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _backward_compatibility_gradient_checkpointing(self):
# Override to not delete the attribute from the config
if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
self.gradient_checkpointing_enable()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(input)
hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
if self._use_flash_attention_2:
attention_mask = attention_mask if 0 in attention_mask else None
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class MBartDecoder(MBartPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`]
Args:
config: MBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = MBartScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
if self._use_flash_attention_2:
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {attn_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare MBART Model outputting raw hidden-states without any specific head on top.",
MBART_START_DOCSTRING,
)
class MBartModel(MBartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: MBartConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = MBartEncoder(config, self.shared)
self.decoder = MBartDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.get_input_embeddings())
self._tie_or_clone_weights(self.decoder.embed_tokens, self.get_input_embeddings())
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqModelOutput, Tuple[torch.FloatTensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# different to other models, MBart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models.",
MBART_START_DOCSTRING,
)
class MBartForConditionalGeneration(MBartPreTrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
_tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: MBartConfig):
super().__init__(config)
self.model = MBartModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(MBART_GENERATION_EXAMPLE)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if decoder_input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = decoder_input_ids.shape[1] - 1
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"""
MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
MBART_START_DOCSTRING,
)
class MBartForSequenceClassification(MBartPreTrainedModel):
_tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"]
def __init__(self, config: MBartConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = MBartModel(config)
self.classification_head = MBartClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.forward
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
MBART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MBART_START_DOCSTRING,
)
class MBartForQuestionAnswering(MBartPreTrainedModel):
_tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = MBartModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bart.modeling_bart.BartForQuestionAnswering.forward
def forward(
self,
input_ids: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->MBart
class MBartDecoderWrapper(MBartPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = MBartDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart, facebook/bart-base->facebook/mbart-large-cc25
class MBartForCausalLM(MBartPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = MBartDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MBartForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
):
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past_key_values:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch UnimerNet Transformer model.
This implementation is identical to a regular Swin Transformer, without final layer norm on top of the final hidden
states."""
import collections.abc
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer
from transformers.utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
torch_int,
)
from .configuration_unimernet_encoder import UnimerNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "UnimerNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "https://huggingface.co/naver-clova-ix/donut-base"
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->UnimerNet
class UnimerNetEncoderOutput(ModelOutput):
"""
UnimerNet encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
# Copied from transformers.models.swin.modeling_swin.SwinModelOutput with Swin->UnimerNet
class UnimerNetModelOutput(ModelOutput):
"""
UnimerNet model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
# Copied from transformers.models.swin.modeling_swin.window_partition
def window_partition(input_feature, window_size):
"""
Partitions the given input into windows.
"""
batch_size, height, width, num_channels = input_feature.shape
input_feature = input_feature.view(
batch_size, height // window_size, window_size, width // window_size, window_size, num_channels
)
windows = input_feature.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
return windows
# Copied from transformers.models.swin.modeling_swin.window_reverse
def window_reverse(windows, window_size, height, width):
"""
Merges windows to produce higher resolution features.
"""
num_channels = windows.shape[-1]
windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels)
windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels)
return windows
# Copied from transformers.models.swin.modeling_swin.SwinEmbeddings with Swin->UnimerNet
class UnimerNetEmbeddings(nn.Module):
"""
Construct the patch and position embeddings. Optionally, also the mask token.
"""
def __init__(self, config, use_mask_token=False):
super().__init__()
self.patch_embeddings = UnimerNetPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.patch_grid = self.patch_embeddings.grid_size
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None
if config.use_absolute_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.embed_dim))
else:
self.position_embeddings = None
self.norm = nn.LayerNorm(config.embed_dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
if num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, 0]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
h0 = height // self.config.patch_size
w0 = width // self.config.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
h0, w0 = h0 + 0.1, w0 + 0.1
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def forward(
self,
pixel_values: Optional[torch.FloatTensor],
bool_masked_pos: Optional[torch.BoolTensor] = None,
interpolate_pos_encoding: bool = False,
) -> Tuple[torch.Tensor]:
_, num_channels, height, width = pixel_values.shape
embeddings, output_dimensions = self.patch_embeddings(pixel_values)
embeddings = self.norm(embeddings)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
if self.position_embeddings is not None:
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings, output_dimensions
# Copied from transformers.models.swin.modeling_swin.SwinPatchEmbeddings with Swin->UnimerNet
class UnimerNetPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.embed_dim
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def maybe_pad(self, pixel_values, height, width):
if width % self.patch_size[1] != 0:
pad_values = (0, self.patch_size[1] - width % self.patch_size[1])
pixel_values = nn.functional.pad(pixel_values, pad_values)
if height % self.patch_size[0] != 0:
pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0])
pixel_values = nn.functional.pad(pixel_values, pad_values)
return pixel_values
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]:
_, num_channels, height, width = pixel_values.shape
# pad the input to be divisible by self.patch_size, if needed
pixel_values = self.maybe_pad(pixel_values, height, width)
embeddings = self.projection(pixel_values)
_, _, height, width = embeddings.shape
output_dimensions = (height, width)
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, output_dimensions
# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging
class UnimerNetPatchMerging(nn.Module):
"""
Patch Merging Layer.
Args:
input_resolution (`Tuple[int]`):
Resolution of input feature.
dim (`int`):
Number of input channels.
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
Normalization layer class.
"""
def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def maybe_pad(self, input_feature, height, width):
should_pad = (height % 2 == 1) or (width % 2 == 1)
if should_pad:
pad_values = (0, 0, 0, width % 2, 0, height % 2)
input_feature = nn.functional.pad(input_feature, pad_values)
return input_feature
def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor:
height, width = input_dimensions
# `dim` is height * width
batch_size, dim, num_channels = input_feature.shape
input_feature = input_feature.view(batch_size, height, width, num_channels)
# pad input to be disible by width and height, if needed
input_feature = self.maybe_pad(input_feature, height, width)
# [batch_size, height/2, width/2, num_channels]
input_feature_0 = input_feature[:, 0::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_1 = input_feature[:, 1::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_2 = input_feature[:, 0::2, 1::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_3 = input_feature[:, 1::2, 1::2, :]
# batch_size height/2 width/2 4*num_channels
input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C
input_feature = self.norm(input_feature)
input_feature = self.reduction(input_feature)
return input_feature
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.swin.modeling_swin.SwinDropPath
class UnimerNetDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->UnimerNet
class UnimerNetSelfAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.window_size = (
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
)
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads)
)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij"))
coords_flatten = torch.flatten(coords, 1)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += self.window_size[0] - 1
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)
self.register_buffer("relative_position_index", relative_position_index)
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
batch_size, dim, num_channels = hidden_states.shape
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)]
relative_position_bias = relative_position_bias.view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
)
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
attention_scores = attention_scores + relative_position_bias.unsqueeze(0)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in UnimerNetModel forward() function)
mask_shape = attention_mask.shape[0]
attention_scores = attention_scores.view(
batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim
)
attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0)
attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput
class UnimerNetSelfOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, dim)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->UnimerNet
class UnimerNetAttention(nn.Module):
def __init__(self, config, dim, num_heads, window_size):
super().__init__()
self.self = UnimerNetSelfAttention(config, dim, num_heads, window_size)
self.output = UnimerNetSelfOutput(config, dim)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.swin.modeling_swin.SwinIntermediate
class UnimerNetIntermediate(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.swin.modeling_swin.SwinOutput
class UnimerNetOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class ConvEnhance(nn.Module):
"""Depth-wise convolution to get the positional information.
"""
def __init__(self, config, dim, k=3):
super(ConvEnhance, self).__init__()
self.proj = nn.Conv2d(dim,
dim,
(k,k),
(1,1),
(k // 2,k // 2),
groups=dim)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x, size: Tuple[int, int]):
B, N, C = x.shape
H, W = size
assert N == H * W
feat = x.transpose(1, 2).view(B, C, H, W)
feat = self.proj(feat)
feat = self.act_fn(feat)
feat = feat.flatten(2).transpose(1, 2)
x = x + feat
return x
# Copied from transformers.models.swin.modeling_swin.SwinLayer with Swin->UnimerNet
class UnimerNetLayer(nn.Module):
def __init__(self, config, dim, input_resolution, num_heads, shift_size=0):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.shift_size = shift_size
self.window_size = config.window_size
self.input_resolution = input_resolution
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.ce = nn.ModuleList([ConvEnhance(config, dim=dim, k=3),
ConvEnhance(config, dim=dim, k=3)])
self.attention = UnimerNetAttention(config, dim, num_heads, window_size=self.window_size)
self.drop_path = UnimerNetDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.intermediate = UnimerNetIntermediate(config, dim)
self.output = UnimerNetOutput(config, dim)
def set_shift_and_window_size(self, input_resolution):
if min(input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = torch_int(0)
self.window_size = (
torch.min(torch.tensor(input_resolution)) if torch.jit.is_tracing() else min(input_resolution)
)
def get_attn_mask(self, height, width, dtype, device):
if self.shift_size > 0:
# calculate attention mask for SW-MSA
img_mask = torch.zeros((1, height, width, 1), dtype=dtype, device=device)
height_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
width_slices = (
slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None),
)
count = 0
for height_slice in height_slices:
for width_slice in width_slices:
img_mask[:, height_slice, width_slice, :] = count
count += 1
mask_windows = window_partition(img_mask, self.window_size)
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
return attn_mask
def maybe_pad(self, hidden_states, height, width):
pad_right = (self.window_size - width % self.window_size) % self.window_size
pad_bottom = (self.window_size - height % self.window_size) % self.window_size
pad_values = (0, 0, 0, pad_right, 0, pad_bottom)
hidden_states = nn.functional.pad(hidden_states, pad_values)
return hidden_states, pad_values
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
if not always_partition:
self.set_shift_and_window_size(input_dimensions)
else:
pass
height, width = input_dimensions
batch_size, _, channels = hidden_states.size()
hidden_states = self.ce[0](hidden_states, input_dimensions)
shortcut = hidden_states
hidden_states = self.layernorm_before(hidden_states)
hidden_states = hidden_states.view(batch_size, height, width, channels)
# pad hidden_states to multiples of window size
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
_, height_pad, width_pad, _ = hidden_states.shape
# cyclic shift
if self.shift_size > 0:
shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_hidden_states = hidden_states
# partition windows
hidden_states_windows = window_partition(shifted_hidden_states, self.window_size)
hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels)
attn_mask = self.get_attn_mask(
height_pad, width_pad, dtype=hidden_states.dtype, device=hidden_states_windows.device
)
attention_outputs = self.attention(
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions
)
attention_output = attention_outputs[0]
attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels)
shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad)
# reverse cyclic shift
if self.shift_size > 0:
attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
attention_windows = shifted_windows
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_windows = attention_windows[:, :height, :width, :].contiguous()
attention_windows = attention_windows.view(batch_size, height * width, channels)
hidden_states = shortcut + self.drop_path(attention_windows)
hidden_states = self.ce[1](hidden_states, input_dimensions)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = hidden_states + self.output(layer_output)
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
return layer_outputs
# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->UnimerNet
class UnimerNetStage(nn.Module):
def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample):
super().__init__()
self.config = config
self.dim = dim
self.blocks = nn.ModuleList(
[
UnimerNetLayer(
config=config,
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
shift_size=0,
)
for i in range(depth)
]
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm)
else:
self.downsample = None
self.pointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
height, width = input_dimensions
for i, layer_module in enumerate(self.blocks):
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
output_dimensions = (height, width, height_downsampled, width_downsampled)
hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions)
else:
output_dimensions = (height, width, height, width)
stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
# Copied from transformers.models.swin.modeling_swin.SwinEncoder with Swin->UnimerNet
class UnimerNetEncoder(nn.Module):
def __init__(self, config, grid_size):
super().__init__()
self.num_layers = len(config.depths)
self.config = config
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
self.layers = nn.ModuleList(
[
UnimerNetStage(
config=config,
dim=int(config.embed_dim * 2**i_layer),
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
depth=config.depths[i_layer],
num_heads=config.num_heads[i_layer],
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
downsample=UnimerNetPatchMerging if (i_layer < self.num_layers - 1) else None,
)
for i_layer in range(self.num_layers)
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
input_dimensions: Tuple[int, int],
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
output_hidden_states_before_downsampling: Optional[bool] = False,
always_partition: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, UnimerNetEncoderOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
input_dimensions,
layer_head_mask,
output_attentions,
always_partition,
)
else:
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition
)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = layer_outputs[1]
output_dimensions = layer_outputs[2]
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
if output_hidden_states and output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states_before_downsampling.shape
# rearrange b (h w) c -> b c h w
# here we use the original (not downsampled) height and width
reshaped_hidden_state = hidden_states_before_downsampling.view(
batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size
)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
batch_size, _, hidden_size = hidden_states.shape
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size)
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[3:]
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return UnimerNetEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->UnimerNet
class UnimerNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = UnimerNetConfig
base_model_prefix = "swin"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["UnimerNetStage"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
SWIN_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`UnimerNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SWIN_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`DonutImageProcessor.__call__`] for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare UnimerNet Model transformer outputting raw hidden-states without any specific head on top.",
SWIN_START_DOCSTRING,
)
class UnimerNetModel(UnimerNetPreTrainedModel):
def __init__(self, config, add_pooling_layer=True, use_mask_token=False):
super().__init__(config)
self.config = config
self.num_layers = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
self.embeddings = UnimerNetEmbeddings(config, use_mask_token=use_mask_token)
self.encoder = UnimerNetEncoder(config, self.embeddings.patch_grid)
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=UnimerNetModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
bool_masked_pos: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, UnimerNetModelOutput]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, len(self.config.depths))
embedding_output, input_dimensions = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding
)
encoder_outputs = self.encoder(
embedding_output,
input_dimensions,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output.transpose(1, 2))
pooled_output = torch.flatten(pooled_output, 1)
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return UnimerNetModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
from typing import Dict, Union, Optional, List
from torch import TensorType
from transformers import DonutImageProcessor, DonutProcessor
from transformers.image_processing_utils import BatchFeature
from transformers.image_transforms import pad
from transformers.image_utils import PILImageResampling, ImageInput, ChannelDimension, make_list_of_images, \
valid_images, to_numpy_array, is_scaled_image, get_image_size
import numpy as np
import PIL
import logging
logger = logging.getLogger()
IMAGE_STD = [0.229, 0.224, 0.225]
IMAGE_MEAN = [0.485, 0.456, 0.406]
class VariableDonutImageProcessor(DonutImageProcessor):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def numpy_resize(self, image: np.ndarray, size, resample):
image = PIL.Image.fromarray(image)
resized = self.pil_resize(image, size, resample)
resized = np.array(resized, dtype=np.uint8)
resized_image = resized.transpose(2, 0, 1)
return resized_image
def pil_resize(self, image: PIL.Image.Image, size, resample):
width, height = image.size
max_width, max_height = size["width"], size["height"]
if width != max_width or height != max_height:
# Shrink to fit within dimensions
width_scale = max_width / width
height_scale = max_height / height
scale = min(width_scale, height_scale)
new_width = min(int(width * scale), max_width)
new_height = min(int(height * scale), max_height)
image = image.resize((new_width, new_height), resample)
image.thumbnail((max_width, max_height), resample)
assert image.width <= max_width and image.height <= max_height
return image
def process_inner(self, images: List[List], train=False):
# This will be in list of lists format, with height x width x channel
assert isinstance(images[0], (list, np.ndarray))
# convert list of lists format to array
if isinstance(images[0], list):
# numpy unit8 needed for augmentation
np_images = [np.array(img, dtype=np.uint8) for img in images]
else:
np_images = [img.astype(np.uint8) for img in images]
assert np_images[0].shape[2] == 3 # RGB input images, channel dim last
# This also applies the right channel dim format, to channel x height x width
np_images = [self.numpy_resize(img, self.max_size, self.resample) for img in np_images]
assert np_images[0].shape[0] == 3 # RGB input images, channel dim first
# Convert to float32 for rescale/normalize
np_images = [img.astype(np.float32) for img in np_images]
# Pads with 255 (whitespace)
# Pad to max size to improve performance
max_size = self.max_size
np_images = [
self.pad_image(
image=image,
size=max_size,
random_padding=train, # Change amount of padding randomly during training
input_data_format=ChannelDimension.FIRST,
pad_value=255.0
)
for image in np_images
]
# Rescale and normalize
np_images = [
self.rescale(img, scale=self.rescale_factor, input_data_format=ChannelDimension.FIRST)
for img in np_images
]
np_images = [
self.normalize(img, mean=self.image_mean, std=self.image_std, input_data_format=ChannelDimension.FIRST)
for img in np_images
]
return np_images
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_thumbnail: bool = None,
do_align_long_axis: bool = None,
do_pad: bool = None,
random_padding: bool = False,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> PIL.Image.Image:
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# Convert to numpy for later processing steps
images = [to_numpy_array(image) for image in images]
images = self.process_inner(images, train=False)
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
def pad_image(
self,
image: np.ndarray,
size: Dict[str, int],
random_padding: bool = False,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
pad_value: float = 0.0,
) -> np.ndarray:
output_height, output_width = size["height"], size["width"]
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
delta_width = output_width - input_width
delta_height = output_height - input_height
assert delta_width >= 0 and delta_height >= 0
if random_padding:
pad_top = np.random.randint(low=0, high=delta_height + 1)
pad_left = np.random.randint(low=0, high=delta_width + 1)
else:
pad_top = delta_height // 2
pad_left = delta_width // 2
pad_bottom = delta_height - pad_top
pad_right = delta_width - pad_left
padding = ((pad_top, pad_bottom), (pad_left, pad_right))
return pad(image, padding, data_format=data_format, input_data_format=input_data_format,
constant_values=pad_value)
class VariableDonutProcessor(DonutProcessor):
def __init__(self, image_processor=None, tokenizer=None, train=False, **kwargs):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
self._in_target_context_manager = False
self.train = train
def __call__(self, *args, **kwargs):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
images = kwargs.pop("images", None)
text = kwargs.pop("text", None)
if len(args) > 0:
images = args[0]
args = args[1:]
if images is None:
raise ValueError("You need to specify images to process.")
inputs = self.image_processor(images, *args, **kwargs)
return inputs
import torch
import torch.nn.functional as F
from unimernet.common.registry import registry
from unimernet.models.blip2_models.blip2 import Blip2Base
from unimernet.models.unimernet.encoder_decoder import DonutEncoderDecoder, DonutTokenizer
@registry.register_model("unimernet")
class UniMERModel(Blip2Base):
"""
Nougat model for formula recognition.
Supported model types:
- default
Usage:
>>> from unimernet.models import load_model
>>> model = load_model("unimernet", "default")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"default": "configs/models/unimernet_base.yaml",
"unimernet": "configs/models/unimernet_base.yaml",
}
def __init__(
self,
*,
model_name,
model_config,
tokenizer_name,
tokenizer_config,
):
super().__init__()
self.tokenizer = DonutTokenizer(tokenizer_config.path)
self.model = DonutEncoderDecoder(
model_config.model_name,
num_tokens=len(self.tokenizer),
bos_token_id=self.tokenizer.bos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
)
self.max_seq_len = model_config.max_seq_len
self.tokenizer.max_seq_len = self.max_seq_len
def forward(self, samples):
image, text = samples["image"], samples["text_input"]
text_inputs = self.tokenizer.tokenize(text).to(image.device)
count_gt = self._get_count_gt(text, image.device)
tgt_seq, tgt_mask = text_inputs["input_ids"], text_inputs["attention_mask"]
with self.maybe_autocast():
loss = self.model(
pixel_values=image,
decoder_input_ids=tgt_seq,
decoder_attention_mask=tgt_mask,
decoder_count_gt=count_gt,
)
return {"loss": loss}
def _get_count_gt(self, text, device):
labels = self.tokenizer.tokenize(text, max_length=1536)["input_ids"].to(device)
mask = labels != self.tokenizer.pad_token_id
one_hot_labels = F.one_hot(labels, num_classes=self.tokenizer.tokenizer.vocab_size) * mask.unsqueeze(-1)
count_gt = torch.sum(one_hot_labels, dim=1)
return count_gt # (bs, vocab_size)
@torch.no_grad()
def generate(
self,
samples,
temperature: float = 0.2,
do_sample: bool = False,
top_p: float = 0.95,
**kwargs
):
image = samples["image"]
with self.maybe_autocast():
outputs = self.model.generate(
pixel_values=image,
temperature=temperature,
max_new_tokens=self.max_seq_len,
decoder_start_token_id=self.tokenizer.tokenizer.bos_token_id,
# decoder_end_token_id=self.tokenizer.tokenizer.eos_token_id,
do_sample=do_sample,
top_p=top_p,
**kwargs
)
pred_tokens = self.tokenizer.detokenize(outputs)
pred_str = self.tokenizer.token2str(outputs)
return {"pred_tokens": pred_tokens, "pred_str": pred_str, "pred_ids": outputs}
@classmethod
def from_config(cls, cfg):
model_name = cfg.get("model_name")
model_config = cfg.get("model_config")
tokenizer_name = cfg.get("tokenizer_name")
tokenizer_config = cfg.get("tokenizer_config")
model = cls(
model_name=model_name,
model_config=model_config,
tokenizer_name=tokenizer_name,
tokenizer_config=tokenizer_config
)
model.load_checkpoint_from_config(cfg)
return model
import torch
import torch.nn as nn
from . import hybrid
from . import vit
from . import transformer
class Model(nn.Module):
def __init__(self, encoder, decoder, args):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.args = args
def data_parallel(self, x: torch.Tensor, device_ids, output_device=None, **kwargs):
if not device_ids or len(device_ids) == 1:
return self(x, **kwargs)
if output_device is None:
output_device = device_ids[0]
replicas = nn.parallel.replicate(self, device_ids)
inputs = nn.parallel.scatter(x, device_ids) # Slices tensors into approximately equal chunks and distributes them across given GPUs.
kwargs = nn.parallel.scatter(kwargs, device_ids) # Duplicates references to objects that are not tensors.
replicas = replicas[:len(inputs)]
kwargs = kwargs[:len(inputs)]
outputs = nn.parallel.parallel_apply(replicas, inputs, kwargs)
return nn.parallel.gather(outputs, output_device).mean()
def forward(self, x: torch.Tensor, tgt_seq: torch.Tensor, **kwargs):
encoded = self.encoder(x)
out = self.decoder(tgt_seq, context=encoded, **kwargs)
return out
@torch.no_grad()
def generate(self, x: torch.Tensor, temperature: float = 0.25):
return self.decoder.generate((torch.LongTensor([self.args.bos_token]*len(x))[:, None]).to(x.device), self.args.max_seq_len,
eos_token=self.args.eos_token, context=self.encoder(x), temperature=temperature)
def get_model(args):
if args.encoder_structure.lower() == 'vit':
encoder = vit.get_encoder(args)
elif args.encoder_structure.lower() == 'hybrid':
encoder = hybrid.get_encoder(args)
else:
raise NotImplementedError('Encoder structure "%s" not supported.' % args.encoder_structure)
decoder = transformer.get_decoder(args)
encoder.to(args.device)
decoder.to(args.device)
model = Model(encoder, decoder, args)
if args.wandb:
import wandb
wandb.watch(model)
return model
\ No newline at end of file
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on timm code base
https://github.com/rwightman/pytorch-image-models/tree/master/timm
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.vision_transformer import _cfg, PatchEmbed
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_, DropPath
from timm.models.helpers import named_apply, adapt_input_conv
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
from unimernet.models.base_model import BaseEncoder
class Mlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.attn_gradients = None
self.attention_map = None
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def forward(self, x, register_hook=False):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
if register_hook:
self.save_attention_map(attn)
attn.register_hook(self.save_attn_gradients)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
use_grad_checkpointing=False,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
if use_grad_checkpointing:
self.attn = checkpoint_wrapper(self.attn)
self.mlp = checkpoint_wrapper(self.mlp)
def forward(self, x, register_hook=False):
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class VisionTransformer(nn.Module):
"""Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
https://arxiv.org/abs/2010.11929
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
representation_size=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=None,
use_grad_checkpointing=False,
ckpt_layer=0,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
"""
super().__init__()
self.num_features = (
self.embed_dim
) = embed_dim # num_features for consistency with other models
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
use_grad_checkpointing=(
use_grad_checkpointing and i >= depth - ckpt_layer
),
)
for i in range(depth)
]
)
self.norm = norm_layer(embed_dim)
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def forward(self, x, register_blk=-1):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(
B, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed[:, : x.size(1), :]
x = self.pos_drop(x)
for i, blk in enumerate(self.blocks):
x = blk(x, register_blk == i)
x = self.norm(x)
return x
@torch.jit.ignore()
def load_pretrained(self, checkpoint_path, prefix=""):
_load_weights(self, checkpoint_path, prefix)
@torch.no_grad()
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ""):
"""Load weights from .npz checkpoints for official Google Brain Flax implementation"""
import numpy as np
def _n2p(w, t=True):
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
w = w.flatten()
if t:
if w.ndim == 4:
w = w.transpose([3, 2, 0, 1])
elif w.ndim == 3:
w = w.transpose([2, 0, 1])
elif w.ndim == 2:
w = w.transpose([1, 0])
return torch.from_numpy(w)
w = np.load(checkpoint_path)
if not prefix and "opt/target/embedding/kernel" in w:
prefix = "opt/target/"
if hasattr(model.patch_embed, "backbone"):
# hybrid
backbone = model.patch_embed.backbone
stem_only = not hasattr(backbone, "stem")
stem = backbone if stem_only else backbone.stem
stem.conv.weight.copy_(
adapt_input_conv(
stem.conv.weight.shape[1], _n2p(w[f"{prefix}conv_root/kernel"])
)
)
stem.norm.weight.copy_(_n2p(w[f"{prefix}gn_root/scale"]))
stem.norm.bias.copy_(_n2p(w[f"{prefix}gn_root/bias"]))
if not stem_only:
for i, stage in enumerate(backbone.stages):
for j, block in enumerate(stage.blocks):
bp = f"{prefix}block{i + 1}/unit{j + 1}/"
for r in range(3):
getattr(block, f"conv{r + 1}").weight.copy_(
_n2p(w[f"{bp}conv{r + 1}/kernel"])
)
getattr(block, f"norm{r + 1}").weight.copy_(
_n2p(w[f"{bp}gn{r + 1}/scale"])
)
getattr(block, f"norm{r + 1}").bias.copy_(
_n2p(w[f"{bp}gn{r + 1}/bias"])
)
if block.downsample is not None:
block.downsample.conv.weight.copy_(
_n2p(w[f"{bp}conv_proj/kernel"])
)
block.downsample.norm.weight.copy_(
_n2p(w[f"{bp}gn_proj/scale"])
)
block.downsample.norm.bias.copy_(_n2p(w[f"{bp}gn_proj/bias"]))
embed_conv_w = _n2p(w[f"{prefix}embedding/kernel"])
else:
embed_conv_w = adapt_input_conv(
model.patch_embed.proj.weight.shape[1], _n2p(w[f"{prefix}embedding/kernel"])
)
model.patch_embed.proj.weight.copy_(embed_conv_w)
model.patch_embed.proj.bias.copy_(_n2p(w[f"{prefix}embedding/bias"]))
model.cls_token.copy_(_n2p(w[f"{prefix}cls"], t=False))
pos_embed_w = _n2p(w[f"{prefix}Transformer/posembed_input/pos_embedding"], t=False)
if pos_embed_w.shape != model.pos_embed.shape:
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
pos_embed_w,
model.pos_embed,
getattr(model, "num_tokens", 1),
model.patch_embed.grid_size,
)
model.pos_embed.copy_(pos_embed_w)
model.norm.weight.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/scale"]))
model.norm.bias.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/bias"]))
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
for i, block in enumerate(model.blocks.children()):
block_prefix = f"{prefix}Transformer/encoderblock_{i}/"
mha_prefix = block_prefix + "MultiHeadDotProductAttention_1/"
block.norm1.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/scale"]))
block.norm1.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/bias"]))
block.attn.qkv.weight.copy_(
torch.cat(
[
_n2p(w[f"{mha_prefix}{n}/kernel"], t=False).flatten(1).T
for n in ("query", "key", "value")
]
)
)
block.attn.qkv.bias.copy_(
torch.cat(
[
_n2p(w[f"{mha_prefix}{n}/bias"], t=False).reshape(-1)
for n in ("query", "key", "value")
]
)
)
block.attn.proj.weight.copy_(_n2p(w[f"{mha_prefix}out/kernel"]).flatten(1))
block.attn.proj.bias.copy_(_n2p(w[f"{mha_prefix}out/bias"]))
for r in range(2):
getattr(block.mlp, f"fc{r + 1}").weight.copy_(
_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/kernel"])
)
getattr(block.mlp, f"fc{r + 1}").bias.copy_(
_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/bias"])
)
block.norm2.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/scale"]))
block.norm2.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/bias"]))
def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()):
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
print("Resized position embedding: %s to %s", posemb.shape, posemb_new.shape)
ntok_new = posemb_new.shape[1]
if num_tokens:
posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
ntok_new -= num_tokens
else:
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(math.sqrt(len(posemb_grid)))
if not len(gs_new): # backwards compatibility
gs_new = [int(math.sqrt(ntok_new))] * 2
assert len(gs_new) >= 2
print("Position embedding grid-size from %s to %s", [gs_old, gs_old], gs_new)
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(
posemb_grid, size=gs_new, mode="bicubic", align_corners=False
)
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
# interpolate position embedding
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = visual_encoder.patch_embed.num_patches
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches**0.5)
if orig_size != new_size:
# class_token and dist_token are kept unchanged
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(
-1, orig_size, orig_size, embedding_size
).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False
)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
print(
"reshape position embedding from %d to %d" % (orig_size**2, new_size**2)
)
return new_pos_embed
else:
return pos_embed_checkpoint
class VisionTransformerEncoder(VisionTransformer, BaseEncoder):
@classmethod
def from_config(cls, cfg, from_pretrained=False):
vit_type = cfg.get("vit_type", "base")
image_size = cfg.get("image_size", 384)
ckpt_layer = cfg.get("vit_ckpt_layer", 0)
drop_path_rate = cfg.get("vit_drop_path_rate", 0)
norm_layer_eps = cfg.get("vit_layer_norm_epsilon", -1)
use_grad_checkpointing = cfg.get("vit_grad_ckpt", False)
if norm_layer_eps == -1:
norm_layer = None
else:
norm_layer = partial(nn.LayerNorm, eps=norm_layer_eps)
# norm_layer=partial(nn.LayerNorm, eps=1e-6),
assert vit_type in ["base", "large"], "vit parameter must be base or large"
if vit_type == "base":
vision_width = 768
visual_encoder = cls(
img_size=image_size,
patch_size=16,
embed_dim=vision_width,
depth=12,
num_heads=12,
use_grad_checkpointing=use_grad_checkpointing,
ckpt_layer=ckpt_layer,
drop_path_rate=0 or drop_path_rate,
norm_layer=norm_layer,
)
if from_pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
map_location="cpu",
check_hash=True,
)
state_dict = checkpoint["model"]
state_dict["pos_embed"] = interpolate_pos_embed(
state_dict["pos_embed"], visual_encoder
)
msg = visual_encoder.load_state_dict(state_dict, strict=False)
elif vit_type == "large":
vision_width = 1024
visual_encoder = cls(
img_size=image_size,
patch_size=16,
embed_dim=vision_width,
depth=24,
num_heads=16,
use_grad_checkpointing=use_grad_checkpointing,
ckpt_layer=ckpt_layer,
drop_path_rate=0.1 or drop_path_rate,
norm_layer=norm_layer,
)
if from_pretrained:
from timm.models.helpers import load_custom_pretrained
from timm.models.vision_transformer import default_cfgs
load_custom_pretrained(
visual_encoder, default_cfgs["vit_large_patch16_224_in21k"]
)
visual_encoder.vision_width = vision_width
return visual_encoder
def forward_features(self, x, register_blk=-1):
return super().forward(x, register_blk)
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
from unimernet.processors.base_processor import BaseProcessor
from unimernet.processors.blip_processors import (
BlipImageTrainProcessor,
Blip2ImageTrainProcessor,
BlipImageEvalProcessor,
BlipCaptionProcessor,
)
from unimernet.processors.formula_processor import (
FormulaImageTrainProcessor,
FormulaImageEvalProcessor,
FormulaImageMultiScaleTrainProcessor,
)
from unimernet.common.registry import registry
__all__ = [
"BaseProcessor",
"BlipCaptionProcessor",
]
def load_processor(name, cfg=None):
"""
Example
>>> processor = load_processor("alpro_video_train", cfg=None)
"""
processor = registry.get_processor_class(name).from_config(cfg)
return processor
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
from omegaconf import OmegaConf
class BaseProcessor:
def __init__(self):
self.transform = lambda x: x
return
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
return cls()
def build(self, **kwargs):
cfg = OmegaConf.create(kwargs)
return self.from_config(cfg)
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import re
from unimernet.common.registry import registry
from unimernet.processors.base_processor import BaseProcessor
from unimernet.processors.randaugment import RandomAugment
from omegaconf import OmegaConf
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
class BlipImageBaseProcessor(BaseProcessor):
def __init__(self, mean=None, std=None):
if mean is None:
mean = (0.48145466, 0.4578275, 0.40821073)
if std is None:
std = (0.26862954, 0.26130258, 0.27577711)
self.normalize = transforms.Normalize(mean, std)
@registry.register_processor("blip_caption")
class BlipCaptionProcessor(BaseProcessor):
def __init__(self, prompt="", max_words=50):
self.prompt = prompt
self.max_words = max_words
def __call__(self, caption):
caption = self.prompt + self.pre_caption(caption)
return caption
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
prompt = cfg.get("prompt", "")
max_words = cfg.get("max_words", 50)
return cls(prompt=prompt, max_words=max_words)
def pre_caption(self, caption):
caption = re.sub(
r"([.!\"()*#:;~])",
" ",
caption.lower(),
)
caption = re.sub(
r"\s{2,}",
" ",
caption,
)
caption = caption.rstrip("\n")
caption = caption.strip(" ")
# truncate caption
caption_words = caption.split(" ")
if len(caption_words) > self.max_words:
caption = " ".join(caption_words[: self.max_words])
return caption
@registry.register_processor("blip_caption_instruct")
class BlipCaptionInstructProcessor(BaseProcessor):
def __init__(self, prompt="", max_words=256):
self.prompt = prompt
self.max_words = max_words
def __call__(self, caption):
caption = self.prompt + self.pre_caption(caption)
return caption
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
prompt = cfg.get("prompt", "")
max_words = cfg.get("max_words", 256)
return cls(prompt=prompt, max_words=max_words)
def pre_caption(self, caption):
# caption = re.sub(
# r"([.!\"()*#:;~])",
# " ",
# caption.lower(),
# )
# caption = re.sub(
# r"\s{2,}",
# " ",
# caption,
# )
caption = caption.rstrip("\n")
caption = caption.strip(" ")
# # truncate caption
# caption_words = caption.split(" ")
# if len(caption_words) > self.max_words:
# caption = " ".join(caption_words[: self.max_words])
return caption
@registry.register_processor("blip_question")
class BlipQuestionProcessor(BaseProcessor):
def __init__(self, max_words=50):
self.max_words = max_words
def __call__(self, question):
return self.pre_question(question)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
max_words = cfg.get("max_words", 50)
return cls(max_words=max_words)
def pre_question(self, question):
question = re.sub(
r"([.!\"()*#:;~])",
"",
question.lower(),
)
question = question.rstrip(" ")
# truncate question
question_words = question.split(" ")
if len(question_words) > self.max_words:
question = " ".join(question_words[: self.max_words])
return question
@registry.register_processor("blip_image_train")
class BlipImageTrainProcessor(BlipImageBaseProcessor):
def __init__(
self, image_size=384, mean=None, std=None, min_scale=0.5, max_scale=1.0
):
super().__init__(mean=mean, std=std)
self.transform = transforms.Compose(
[
transforms.RandomResizedCrop(
image_size,
scale=(min_scale, max_scale),
interpolation=InterpolationMode.BICUBIC,
),
transforms.RandomHorizontalFlip(),
RandomAugment(
2,
5,
isPIL=True,
augs=[
"Identity",
"AutoContrast",
"Brightness",
"Sharpness",
"Equalize",
"ShearX",
"ShearY",
"TranslateX",
"TranslateY",
"Rotate",
],
),
transforms.ToTensor(),
self.normalize,
]
)
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 384)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
min_scale = cfg.get("min_scale", 0.5)
max_scale = cfg.get("max_scale", 1.0)
return cls(
image_size=image_size,
mean=mean,
std=std,
min_scale=min_scale,
max_scale=max_scale,
)
@registry.register_processor("blip_image_eval")
class BlipImageEvalProcessor(BlipImageBaseProcessor):
def __init__(self, image_size=384, mean=None, std=None):
super().__init__(mean=mean, std=std)
self.transform = transforms.Compose(
[
transforms.Resize(
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
),
transforms.ToTensor(),
self.normalize,
]
)
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 384)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
return cls(image_size=image_size, mean=mean, std=std)
@registry.register_processor("blip2_image_train")
class Blip2ImageTrainProcessor(BlipImageBaseProcessor):
def __init__(
self, image_size=364, mean=None, std=None, min_scale=0.5, max_scale=1.0
):
super().__init__(mean=mean, std=std)
self.transform = transforms.Compose(
[
transforms.RandomResizedCrop(
image_size,
scale=(min_scale, max_scale),
interpolation=InterpolationMode.BICUBIC,
),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
self.normalize,
]
)
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 364)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
min_scale = cfg.get("min_scale", 0.5)
max_scale = cfg.get("max_scale", 1.0)
return cls(
image_size=image_size,
mean=mean,
std=std,
min_scale=min_scale,
max_scale=max_scale,
)
\ No newline at end of file
from unimernet.common.registry import registry
from omegaconf import OmegaConf
import albumentations as alb
from albumentations.pytorch import ToTensorV2
from unimernet.processors.base_processor import BaseProcessor
import numpy as np
import cv2
from PIL import Image, ImageOps
from torchvision.transforms.functional import resize
import random
class FormulaImageBaseProcessor(BaseProcessor):
def __init__(self, image_size):
super(FormulaImageBaseProcessor, self).__init__()
self.input_size = [int(_) for _ in image_size]
assert len(self.input_size) == 2
@staticmethod
def crop_margin(img: Image.Image) -> Image.Image:
data = np.array(img.convert("L"))
data = data.astype(np.uint8)
max_val = data.max()
min_val = data.min()
if max_val == min_val:
return img
data = (data - min_val) / (max_val - min_val) * 255
gray = 255 * (data < 200).astype(np.uint8)
coords = cv2.findNonZero(gray) # Find all non-zero points (text)
a, b, w, h = cv2.boundingRect(coords) # Find minimum spanning bounding box
return img.crop((a, b, w + a, h + b))
@staticmethod
def crop_margin_numpy(img: np.ndarray) -> np.ndarray:
"""Crop margins of image using NumPy operations"""
# Convert to grayscale if it's a color image
if len(img.shape) == 3 and img.shape[2] == 3:
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
else:
gray = img.copy()
# Normalize and threshold
if gray.max() == gray.min():
return img
normalized = (((gray - gray.min()) / (gray.max() - gray.min())) * 255).astype(np.uint8)
binary = 255 * (normalized < 200).astype(np.uint8)
# Find bounding box
coords = cv2.findNonZero(binary) # Find all non-zero points (text)
x, y, w, h = cv2.boundingRect(coords) # Find minimum spanning bounding box
# Return cropped image
return img[y:y + h, x:x + w]
def prepare_input(self, img, random_padding: bool = False):
"""
Convert PIL Image or numpy array to properly sized and padded image after:
- crop margins
- resize while maintaining aspect ratio
- pad to target size
"""
if img is None:
return None
# Handle numpy array
elif isinstance(img, np.ndarray):
try:
img = self.crop_margin_numpy(img)
except Exception:
# might throw an error for broken files
return None
if img.shape[0] == 0 or img.shape[1] == 0:
return None
# Get current dimensions
h, w = img.shape[:2]
target_h, target_w = self.input_size
# Calculate scale to preserve aspect ratio (equivalent to resize + thumbnail)
scale = min(target_h / h, target_w / w)
# Calculate new dimensions
new_h, new_w = int(h * scale), int(w * scale)
# Resize the image while preserving aspect ratio
resized_img = cv2.resize(img, (new_w, new_h))
# Calculate padding values using the existing method
delta_width = target_w - new_w
delta_height = target_h - new_h
pad_width, pad_height = self._get_padding_values(new_w, new_h, random_padding)
# Apply padding (convert PIL padding format to OpenCV format)
padding_color = [0, 0, 0] if len(img.shape) == 3 else [0]
padded_img = cv2.copyMakeBorder(
resized_img,
pad_height, # top
delta_height - pad_height, # bottom
pad_width, # left
delta_width - pad_width, # right
cv2.BORDER_CONSTANT,
value=padding_color
)
return padded_img
# Handle PIL Image
elif isinstance(img, Image.Image):
try:
img = self.crop_margin(img.convert("RGB"))
except OSError:
# might throw an error for broken files
return None
if img.height == 0 or img.width == 0:
return None
# Resize while preserving aspect ratio
img = resize(img, min(self.input_size))
img.thumbnail((self.input_size[1], self.input_size[0]))
new_w, new_h = img.width, img.height
# Calculate and apply padding
padding = self._calculate_padding(new_w, new_h, random_padding)
return np.array(ImageOps.expand(img, padding))
else:
return None
def _calculate_padding(self, new_w, new_h, random_padding):
"""Calculate padding values for PIL images"""
delta_width = self.input_size[1] - new_w
delta_height = self.input_size[0] - new_h
pad_width, pad_height = self._get_padding_values(new_w, new_h, random_padding)
return (
pad_width,
pad_height,
delta_width - pad_width,
delta_height - pad_height,
)
def _get_padding_values(self, new_w, new_h, random_padding):
"""Get padding values based on image dimensions and padding strategy"""
delta_width = self.input_size[1] - new_w
delta_height = self.input_size[0] - new_h
if random_padding:
pad_width = np.random.randint(low=0, high=delta_width + 1)
pad_height = np.random.randint(low=0, high=delta_height + 1)
else:
pad_width = delta_width // 2
pad_height = delta_height // 2
return pad_width, pad_height
@registry.register_processor("formula_image_train")
class FormulaImageTrainProcessor(FormulaImageBaseProcessor):
def __init__(self, image_size=384):
super().__init__(image_size)
# Import weather-related augmentations only when initializing this class
from unimernet.processors.formula_processor_helper.nougat import Bitmap, Dilation, Erosion
from unimernet.processors.formula_processor_helper.weather import Fog, Frost, Snow, Rain, Shadow
self.transform = alb.Compose(
[
alb.Compose(
[
Bitmap(p=0.05),
alb.OneOf([Fog(), Frost(), Snow(), Rain(), Shadow()], p=0.2),
alb.OneOf([Erosion((2, 3)), Dilation((2, 3))], p=0.2),
alb.ShiftScaleRotate(shift_limit=0, scale_limit=(-.15, 0), rotate_limit=1, border_mode=0,
interpolation=3,
value=[255, 255, 255],
p=1),
alb.GridDistortion(distort_limit=0.1, border_mode=0, interpolation=3, value=[255, 255, 255],
p=.5)],
p=.15),
# alb.InvertImg(p=.15),
alb.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=0.3),
alb.GaussNoise(10, p=.2),
alb.RandomBrightnessContrast(.05, (-.2, 0), True, p=0.2),
alb.ImageCompression(95, p=.3),
alb.ToGray(always_apply=True),
alb.Normalize((0.7931, 0.7931, 0.7931), (0.1738, 0.1738, 0.1738)),
# alb.Sharpen()
ToTensorV2(),
]
)
def __call__(self, item):
img = self.prepare_input(item, random_padding=True)
if img is None:
return img
return self.transform(image=img)['image'][:1]
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", [384, 384])
return cls(
image_size=image_size,
)
@registry.register_processor("formula_image_multi_scale_train")
class FormulaImageMultiScaleTrainProcessor(FormulaImageTrainProcessor):
def __init__(self, all_scales):
for i, scales in enumerate(all_scales):
all_scales[i] = [int(_) for _ in scales]
super(FormulaImageMultiScaleTrainProcessor, self).__init__(all_scales[0])
self.all_scales = all_scales
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
all_scales = cfg.get("all_scales", [[384, 384]])
return cls(
all_scales=all_scales
)
def reset_scale(self):
self.input_size = random.choice(self.all_scales)
@registry.register_processor("formula_image_eval")
class FormulaImageEvalProcessor(FormulaImageBaseProcessor):
def __init__(self, image_size):
super().__init__(image_size)
self.transform = alb.Compose(
[
alb.ToGray(always_apply=True),
alb.Normalize((0.7931, 0.7931, 0.7931), (0.1738, 0.1738, 0.1738)),
# alb.Sharpen()
ToTensorV2(),
]
)
def __call__(self, item):
image = self.prepare_input(item)
return self.transform(image=image)['image'][:1]
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", [384, 384])
return cls(image_size=image_size)
import albumentations as alb
import numpy as np
import cv2
class Erosion(alb.ImageOnlyTransform):
"""
Apply erosion operation to an image.
Erosion is a morphological operation that shrinks the white regions in a binary image.
Args:
scale (int or tuple/list of int): The scale or range for the size of the erosion kernel.
If an integer is provided, a square kernel of that size will be used.
If a tuple or list is provided, it should contain two integers representing the minimum
and maximum sizes for the erosion kernel.
always_apply (bool, optional): Whether to always apply this transformation. Default is False.
p (float, optional): The probability of applying this transformation. Default is 0.5.
Returns:
numpy.ndarray: The transformed image.
"""
def __init__(self, scale, always_apply=False, p=0.5):
super().__init__(always_apply=always_apply, p=p)
if type(scale) is tuple or type(scale) is list:
assert len(scale) == 2
self.scale = scale
else:
self.scale = (scale, scale)
def apply(self, img, **params):
kernel = cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))
)
img = cv2.erode(img, kernel, iterations=1)
return img
class Dilation(alb.ImageOnlyTransform):
"""
Apply dilation operation to an image.
Dilation is a morphological operation that expands the white regions in a binary image.
Args:
scale (int or tuple/list of int): The scale or range for the size of the dilation kernel.
If an integer is provided, a square kernel of that size will be used.
If a tuple or list is provided, it should contain two integers representing the minimum
and maximum sizes for the dilation kernel.
always_apply (bool, optional): Whether to always apply this transformation. Default is False.
p (float, optional): The probability of applying this transformation. Default is 0.5.
Returns:
numpy.ndarray: The transformed image.
"""
def __init__(self, scale, always_apply=False, p=0.5):
super().__init__(always_apply=always_apply, p=p)
if type(scale) is tuple or type(scale) is list:
assert len(scale) == 2
self.scale = scale
else:
self.scale = (scale, scale)
def apply(self, img, **params):
kernel = cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, tuple(np.random.randint(self.scale[0], self.scale[1], 2))
)
img = cv2.dilate(img, kernel, iterations=1)
return img
class Bitmap(alb.ImageOnlyTransform):
"""
Apply a bitmap-style transformation to an image.
This transformation replaces all pixel values below a certain threshold with a specified value.
Args:
value (int, optional): The value to replace pixels below the threshold with. Default is 0.
lower (int, optional): The threshold value below which pixels will be replaced. Default is 200.
always_apply (bool, optional): Whether to always apply this transformation. Default is False.
p (float, optional): The probability of applying this transformation. Default is 0.5.
Returns:
numpy.ndarray: The transformed image.
"""
def __init__(self, value=0, lower=200, always_apply=False, p=0.5):
super().__init__(always_apply=always_apply, p=p)
self.lower = lower
self.value = value
def apply(self, img, **params):
img = img.copy()
img[img < self.lower] = self.value
return img
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment