import _init_paths import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = [8, 8] import argparse from lib.test.analysis.plot_results import plot_results, print_results, print_per_sequence_results from lib.test.evaluation import get_dataset, trackerlist def parse_args(): """ args for training. """ parser = argparse.ArgumentParser(description='Parse args for training') # for evaluation parser.add_argument('--name', type=str, help='model name') args = parser.parse_args() return args if __name__ == "__main__": trackers = [] dataset_name = 'GOT10K' args = parse_args() trackers.extend(trackerlist(name='unicorn_sot', parameter_name=args.name, dataset_name=dataset_name, run_ids=None, display_name='Unicorn')) dataset = get_dataset('got10k_val') # plot_results(trackers, dataset, 'OTB2015', merge_results=True, plot_types=('success', 'norm_prec'), # skip_missing_seq=False, force_evaluation=True, plot_bin_gap=0.05) print_results(trackers, dataset, dataset_name, merge_results=True, plot_types=('success', 'prec', 'norm_prec')) # print_per_sequence_results(trackers, dataset, "Unicorn")