#include #include #include #include #include #include #include #include "paddle/include/paddle_inference_api.h" #include "yaml-cpp/yaml.h" #include "opencv2/core.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" DEFINE_string(model_dir, "", "Directory of the inference model. " "It constains deploy.yaml and infer models"); DEFINE_string(img_path, "", "Path of the test image."); DEFINE_string(devices, "GPU", "Use GPU or CPU devices. Default: GPU"); DEFINE_bool(use_trt, false, "Wether enable TensorRT when use GPU. Defualt: false."); DEFINE_string(trt_precision, "fp32", "The precision of TensorRT, support fp32, fp16 and int8. Default: fp32"); DEFINE_bool(use_trt_dynamic_shape, false, "Wether enable dynamic shape when use GPU and TensorRT. Defualt: false."); DEFINE_string(dynamic_shape_path, "", "If set dynamic_shape_path, it read the dynamic shape for TRT."); DEFINE_bool(use_mkldnn, false, "Wether enable MKLDNN when use CPU. Defualt: false."); DEFINE_string(save_dir, "", "Directory of the output image."); typedef struct YamlConfig { std::string model_file; std::string params_file; bool is_normalize; bool is_resize; int resize_width; int resize_height; }YamlConfig; YamlConfig load_yaml(const std::string& yaml_path) { YAML::Node node = YAML::LoadFile(yaml_path); std::string model_file = node["Deploy"]["model"].as(); std::string params_file = node["Deploy"]["params"].as(); YamlConfig yaml_config = {model_file, params_file}; if (node["Deploy"]["transforms"]) { const YAML::Node& transforms = node["Deploy"]["transforms"]; for (size_t i = 0; i < transforms.size(); i++) { if (transforms[i]["type"].as() == "Normalize") { yaml_config.is_normalize = true; } else if (transforms[i]["type"].as() == "Resize") { yaml_config.is_resize = true; const YAML::Node& target_size = transforms[i]["target_size"]; yaml_config.resize_width = target_size[0].as(); yaml_config.resize_height = target_size[1].as(); } } } return yaml_config; } std::shared_ptr create_predictor( const YamlConfig& yaml_config) { std::string& model_dir = FLAGS_model_dir; paddle_infer::Config infer_config; infer_config.SetModel(model_dir + "/" + yaml_config.model_file, model_dir + "/" + yaml_config.params_file); infer_config.EnableMemoryOptim(); if (FLAGS_devices == "CPU") { LOG(INFO) << "Use CPU"; if (FLAGS_use_mkldnn) { LOG(INFO) << "Use MKLDNN"; infer_config.EnableMKLDNN(); infer_config.SetCpuMathLibraryNumThreads(5); } } else if(FLAGS_devices == "GPU") { LOG(INFO) << "Use GPU"; infer_config.EnableUseGpu(100, 0); // TRT config if (FLAGS_use_trt) { LOG(INFO) << "Use TRT"; LOG(INFO) << "trt_precision:" << FLAGS_trt_precision; // TRT precision if (FLAGS_trt_precision == "fp32") { infer_config.EnableTensorRtEngine(1 << 20, 1, 3, paddle_infer::PrecisionType::kFloat32, false, false); } else if (FLAGS_trt_precision == "fp16") { infer_config.EnableTensorRtEngine(1 << 20, 1, 3, paddle_infer::PrecisionType::kHalf, false, false); } else if (FLAGS_trt_precision == "int8") { infer_config.EnableTensorRtEngine(1 << 20, 1, 3, paddle_infer::PrecisionType::kInt8, false, false); } else { LOG(FATAL) << "The trt_precision should be fp32, fp16 or int8."; } // TRT dynamic shape if (FLAGS_use_trt_dynamic_shape) { LOG(INFO) << "Enable TRT dynamic shape"; if (FLAGS_dynamic_shape_path.empty()) { std::map> min_input_shape = { {"image", {1, 3, 112, 112}}}; std::map> max_input_shape = { {"image", {1, 3, 1024, 2048}}}; std::map> opt_input_shape = { {"image", {1, 3, 512, 1024}}}; infer_config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape, opt_input_shape); } else { infer_config.EnableTunedTensorRtDynamicShape(FLAGS_dynamic_shape_path, true); } } } } else { LOG(FATAL) << "The devices should be GPU or CPU"; } auto predictor = paddle_infer::CreatePredictor(infer_config); return predictor; } void hwc_img_2_chw_data(const cv::Mat& hwc_img, float* data) { int rows = hwc_img.rows; int cols = hwc_img.cols; int chs = hwc_img.channels(); for (int i = 0; i < chs; ++i) { cv::extractChannel(hwc_img, cv::Mat(rows, cols, CV_32FC1, data + i * rows * cols), i); } } cv::Mat read_process_image(const YamlConfig& yaml_config) { cv::Mat img = cv::imread(FLAGS_img_path, cv::IMREAD_COLOR); cv::cvtColor(img, img, cv::COLOR_BGR2RGB); if (yaml_config.is_resize) { cv::resize(img, img, cv::Size(yaml_config.resize_width, yaml_config.resize_height)); } if (yaml_config.is_normalize) { img.convertTo(img, CV_32F, 1.0 / 255, 0); img = (img - 0.5) / 0.5; } return img; } int main(int argc, char *argv[]) { google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_model_dir == "") { LOG(FATAL) << "The model_dir should not be empty."; } // Load yaml std::string yaml_path = FLAGS_model_dir + "/deploy.yaml"; YamlConfig yaml_config = load_yaml(yaml_path); // Prepare data cv::Mat img = read_process_image(yaml_config); int rows = img.rows; int cols = img.cols; int chs = img.channels(); std::vector input_data(1 * chs * rows * cols, 0.0f); hwc_img_2_chw_data(img, input_data.data()); // Create predictor auto predictor = create_predictor(yaml_config); // Set input auto input_names = predictor->GetInputNames(); auto input_t = predictor->GetInputHandle(input_names[0]); std::vector input_shape = {1, chs, rows, cols}; input_t->Reshape(input_shape); input_t->CopyFromCpu(input_data.data()); // Run predictor->Run(); // Get output auto output_names = predictor->GetOutputNames(); auto output_t = predictor->GetOutputHandle(output_names[0]); std::vector output_shape = output_t->shape(); int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, std::multiplies()); std::vector out_data(out_num); output_t->CopyToCpu(out_data.data()); // Get pseudo image std::vector out_data_u8(out_num); for (int i = 0; i < out_num; i++) { out_data_u8[i] = static_cast(out_data[i]); } cv::Mat out_gray_img(output_shape[1], output_shape[2], CV_8UC1, out_data_u8.data()); cv::Mat out_eq_img; cv::equalizeHist(out_gray_img, out_eq_img); cv::imwrite("out_img.jpg", out_eq_img); LOG(INFO) << "Finish, the result is saved in out_img.jpg"; }