# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import paddle from paddleseg.cvlibs import manager, Config from paddleseg.utils import get_sys_env, logger from core import train from datasets import CityscapesPanoptic from models import PanopticDeepLab def parse_args(): parser = argparse.ArgumentParser(description='Model training') # params of training parser.add_argument( "--config", dest="cfg", help="The config file.", default=None, type=str) parser.add_argument( '--iters', dest='iters', help='iters for training', type=int, default=None) parser.add_argument( '--batch_size', dest='batch_size', help='Mini batch size of one gpu or cpu', type=int, default=None) parser.add_argument( '--learning_rate', dest='learning_rate', help='Learning rate', type=float, default=None) parser.add_argument( '--save_interval', dest='save_interval', help='How many iters to save a model snapshot once during training.', type=int, default=1000) parser.add_argument( '--resume_model', dest='resume_model', help='The path of resume model', type=str, default=None) parser.add_argument( '--save_dir', dest='save_dir', help='The directory for saving the model snapshot', type=str, default='./output') parser.add_argument( '--keep_checkpoint_max', dest='keep_checkpoint_max', help='Maximum number of checkpoints to save', type=int, default=5) parser.add_argument( '--num_workers', dest='num_workers', help='Num workers for data loader', type=int, default=0) parser.add_argument( '--do_eval', dest='do_eval', help='Eval while training', action='store_true') parser.add_argument( '--log_iters', dest='log_iters', help='Display logging information at every log_iters', default=10, type=int) parser.add_argument( '--use_vdl', dest='use_vdl', help='Whether to record the data to VisualDL during training', action='store_true') parser.add_argument( '--threshold', dest='threshold', help='Threshold applied to center heatmap score', type=float, default=0.1) parser.add_argument( '--nms_kernel', dest='nms_kernel', help='NMS max pooling kernel size', type=int, default=7) parser.add_argument( '--top_k', dest='top_k', help='Top k centers to keep', type=int, default=200) return parser.parse_args() def main(args): env_info = get_sys_env() info = ['{}: {}'.format(k, v) for k, v in env_info.items()] info = '\n'.join(['', format('Environment Information', '-^48s')] + info + ['-' * 48]) logger.info(info) place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config( args.cfg, learning_rate=args.learning_rate, iters=args.iters, batch_size=args.batch_size) cfg.check_sync_info() train_dataset = cfg.train_dataset if train_dataset is None: raise RuntimeError( 'The training dataset is not specified in the configuration file.') elif len(train_dataset) == 0: raise ValueError( 'The length of train_dataset is 0. Please check if your dataset is valid' ) val_dataset = cfg.val_dataset if args.do_eval else None losses = cfg.loss msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) train( cfg.model, train_dataset, val_dataset=val_dataset, optimizer=cfg.optimizer, save_dir=args.save_dir, iters=cfg.iters, batch_size=cfg.batch_size, resume_model=args.resume_model, save_interval=args.save_interval, log_iters=args.log_iters, num_workers=args.num_workers, use_vdl=args.use_vdl, losses=losses, keep_checkpoint_max=args.keep_checkpoint_max, threshold=args.threshold, nms_kernel=args.nms_kernel, top_k=args.top_k, ) if __name__ == '__main__': args = parse_args() main(args)