# set your GPU ID here export CUDA_VISIBLE_DEVICES=3 # set the config file name and save directory here config_name=vnet_lung_coronavirus_128_128_128_15k yml=lung_coronavirus/${config_name} save_dir_all=saved_model save_dir=saved_model/${config_name} mkdir -p $save_dir # Train the model: see the train.py for detailed explanation on script args python3 train.py --config configs/${yml}.yml \ --save_dir $save_dir \ --save_interval 500 --log_iters 100 \ --num_workers 6 --do_eval --use_vdl \ --keep_checkpoint_max 5 --seed 0 >> $save_dir/train.log # Validate the model: see the val.py for detailed explanation on script args python3 val.py --config configs/${yml}.yml \ --save_dir $save_dir/best_model --model_path $save_dir/best_model/model.pdparams \ # export the model python export.py --config configs/${yml}.yml \ --model_path $save_dir/best_model/model.pdparams # infer the model python deploy/python/infer.py --config output/deploy.yaml --image_path data/lung_coronavirus/lung_coronavirus_phase0/images/coronacases_org_007.npy --benchmark True