# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import pickle import sys parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) sys.path.insert(0, parent_path) import paddle import yaml from medicalseg.cvlibs import Config from medicalseg.utils import logger import nnunet def parse_args(): parser = argparse.ArgumentParser(description='Model export.') # params of training parser.add_argument( "--config", dest="cfg", help="The config file.", default=None, type=str, required=True) parser.add_argument( '--save_dir', dest='save_dir', help='The directory for saving the exported model', type=str, default='./output') parser.add_argument( '--model_path', dest='model_path', help='The path of model for export', type=str, default=None) return parser.parse_args() class SavedSegmentationNet(paddle.nn.Layer): def __init__(self, net): super().__init__() self.net = net def forward(self, x): outs = self.net(x) outputs = [] for out in outs: out = paddle.nn.functional.softmax(out, axis=1) outputs.append(out) return outputs def main(args): os.environ['MEDICALSEG_EXPORT_STAGE'] = 'True' cfg = Config(args.cfg) net = cfg.model if args.model_path: para_state_dict = paddle.load(args.model_path) net.set_dict(para_state_dict) logger.info('Loaded trained params of model successfully.') shape = [None, net.num_input_channels, *net.patch_size.tolist()] print("Export nnunet static model patch size: ", shape) # if args.input_shape is None: # shape = [None, 1, None, None, None] # else: # shape = args.input_shape new_net = SavedSegmentationNet(net) new_net.eval() new_net = paddle.jit.to_static( new_net, input_spec=[paddle.static.InputSpec( shape=shape, dtype='float32')]) # export is export to static graph save_path = os.path.join(args.save_dir, 'model') paddle.jit.save(new_net, save_path) yml_file = os.path.join(args.save_dir, 'deploy.yaml') with open(yml_file, 'w') as file: transforms = cfg.export_config.get('transforms', [{}]) data = { 'Deploy': { 'transforms': transforms, 'model': 'model.pdmodel', 'params': 'model.pdiparams' } } yaml.dump(data, file) logger.info(f'Model is saved in {args.save_dir}.') if __name__ == '__main__': args = parse_args() main(args)