# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import paddle import yaml from medicalseg.cvlibs import Config from medicalseg.utils import logger def parse_args(): parser = argparse.ArgumentParser(description='Model export.') # params of training parser.add_argument( "--config", dest="cfg", help="The config file.", default=None, type=str, required=True) parser.add_argument( '--save_dir', dest='save_dir', help='The directory for saving the exported model', type=str, default='./output') parser.add_argument( '--model_path', dest='model_path', help='The path of model for export', type=str, default=None) parser.add_argument( '--without_argmax', dest='without_argmax', help='Do not add the argmax operation at the end of the network', action='store_true') parser.add_argument( '--with_softmax', dest='with_softmax', help='Add the softmax operation at the end of the network', action='store_true') parser.add_argument( "--input_shape", nargs='+', help="Export the model with fixed input shape, such as 1 3 1024 1024.", type=int, default=None) return parser.parse_args() class SavedSegmentationNet(paddle.nn.Layer): def __init__(self, net, without_argmax=False, with_softmax=False): super().__init__() self.net = net self.post_processer = PostPorcesser(without_argmax, with_softmax) def forward(self, x): outs = self.net(x) outs = self.post_processer(outs) return outs class PostPorcesser(paddle.nn.Layer): def __init__(self, without_argmax, with_softmax): super().__init__() self.without_argmax = without_argmax self.with_softmax = with_softmax def forward(self, outs): new_outs = [] for out in outs: if self.with_softmax: out = paddle.nn.functional.softmax(out, axis=1) if not self.without_argmax: out = paddle.argmax(out, axis=1) new_outs.append(out) return new_outs def main(args): os.environ['MEDICALSEG_EXPORT_STAGE'] = 'True' cfg = Config(args.cfg) net = cfg.model if args.model_path: para_state_dict = paddle.load(args.model_path) net.set_dict(para_state_dict) logger.info('Loaded trained params of model successfully.') if args.input_shape is None: shape = [None, 1, None, None, None] else: shape = args.input_shape if not args.without_argmax or args.with_softmax: new_net = SavedSegmentationNet(net, args.without_argmax, args.with_softmax) else: new_net = net new_net.eval() new_net = paddle.jit.to_static( new_net, input_spec=[paddle.static.InputSpec( shape=shape, dtype='float32')]) # export is export to static graph save_path = os.path.join(args.save_dir, 'model') paddle.jit.save(new_net, save_path) yml_file = os.path.join(args.save_dir, 'deploy.yaml') with open(yml_file, 'w') as file: transforms = cfg.export_config.get('transforms', [{}]) inference_helper = cfg.export_config.get('inference_helper', None) data = { 'Deploy': { 'transforms': transforms, 'inference_helper': inference_helper, 'model': 'model.pdmodel', 'params': 'model.pdiparams' } } yaml.dump(data, file) logger.info(f'Model is saved in {args.save_dir}.') if __name__ == '__main__': args = parse_args() main(args)