_base_: '../_base_/global_configs.yml' batch_size: 4 iters: 250000 train_dataset: type: ACDC dataset_root: ACDCDataset/ACDCDataset_phase0 result_dir: ACDCDataset/ACDCDataset_phase1 transforms: - type: RandomRotation3D degrees: 15 - type: ResizeRangeScaling min_scale_factor: 0.85 max_scale_factor: 1.25 interpolation: 3 p_per_sample: 0.25 - type: GaussianNoiseTransform p_per_sample: 0.1 - type: GaussianBlurTransform blur_sigma: [0.5, 1.] different_sigma_per_channel: True p_per_sample: 0.2 p_per_channel: 0.5 - type: BrightnessMultiplicativeTransform multiplier_range: [0.75, 1.25] p_per_sample: 0.15 - type: ContrastAugmentationTransform p_per_sample: 0.15 - type: SimulateLowResolutionTransform zoom_range: [0.5, 1] per_channel: True p_per_channel: 0.5 order_downsample: 0 order_upsample: 3 p_per_sample: 0.25 - type: GammaTransform gamma_range: [0.5, 2] - type: MirrorTransform p_per_sample: 0.2 - type: RandomPaddingCrop crop_size: [14, 160, 160] num_classes: 4 mode: train val_dataset: type: ACDC dataset_root: ACDCDataset/ACDCDataset_phase0 result_dir: ACDCDataset/ACDCDataset_phase1 num_classes: 4 transforms: [] mode: val optimizer: type: sgd momentum: 0.99 weight_decay: 0.00005 lr_scheduler: type: PolynomialDecay learning_rate: 0.0004 decay_steps: 250000 end_lr: 0 power: 0.9 loss: types: - type: MixedLoss losses: - type: CrossEntropyLoss weight: Null - type: DiceLoss coef: [1, 1] coef: [0.5714, 0.2857,0.1428] export: inference_helper: type: NNFormerInferenceHelper