# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import paddle from paddleseg.cvlibs import manager from paddleseg.transforms.transforms import Compose from transforms.lane_transforms import LaneRandomRotation, SubImgCrop @manager.DATASETS.add_component class Tusimple(paddle.io.Dataset): """ Tusimple dataset `https://github.com/TuSimple/tusimple-benchmark/issues/3`. The folder structure is as follow: |-- tusimple |-- train_set |-- clips |-- 0313-1 |-- 0313-2 |-- 0531 |-- 0601 |-- labels [need to generate label dir] |-- 0313-1 |-- 0313-2 |-- 0531 |-- 0601 |-- train_list.txt [need to generate] |-- label_data_0313.json |-- label_data_0531.json |-- label_data_0601.json |-- test_set |-- clips |-- 0530 |-- 0531 |-- 0601 |-- labels [need to generate label dir] |-- 0530 |-- 0531 |-- 0601 |-- train_list.txt [need to generate] |-- test_tasks_0627.json |-- test_label.json Make sure test_label.json is in test_set directory, and there are labels directory in train_set and test_set directory. If not, please run the generate_seg_tusimple.py in utils. Args: transforms (list): Transforms for image. dataset_root (str): tusimple dataset directory. mode (str, optional): Which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'. cut_height (int, optional): Whether to cut image height while training. Default: 0 """ NUM_CLASSES = 7 def __init__(self, transforms=None, dataset_root=None, mode='train', cut_height=0): self.dataset_root = dataset_root self.transforms = Compose(transforms, to_rgb=False) mode = mode.lower() self.mode = mode self.file_list = list() self.num_classes = self.NUM_CLASSES self.ignore_index = 255 self.cut_height = cut_height self.test_gt_json = os.path.join(self.dataset_root, 'test_set/test_label.json') if mode not in ['train', 'val', 'test']: raise ValueError( "`mode` should be 'train', 'val' or 'test', but got {}.".format( mode)) if self.transforms is None: raise ValueError("`transforms` is necessary, but it is None.") if self.dataset_root is None: raise ValueError("`dataset_root` is necessary, but it is None.") if mode == 'train': file_path = os.path.join(self.dataset_root, 'train_set/train_list.txt') elif mode == 'val': file_path = os.path.join(self.dataset_root, 'test_set/test_list.txt') else: file_path = os.path.join(self.dataset_root, 'test_set/test_list.txt') with open(file_path, 'r') as f: for line in f: items = line.strip().split() if len(items) != 2: if mode == 'train' or mode == 'val': raise Exception( "File list format incorrect! It should be" " image_name label_name\\n") image_path = os.path.join(self.dataset_root, items[0]) label_path = None else: image_path = self.dataset_root + items[0] label_path = self.dataset_root + items[1] self.file_list.append([image_path, label_path]) def __getitem__(self, idx): image_path, label_path = self.file_list[idx] if self.mode == 'test': im, _ = self.transforms(im=image_path) im = im[np.newaxis, ...] return im, image_path elif self.mode == 'val': im, label = self.transforms(im=image_path, label=label_path) return im, label, image_path else: im, label = self.transforms(im=image_path, label=label_path) return im, label def __len__(self): return len(self.file_list)