# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import paddle import yaml from paddleseg.cvlibs import Config from paddleseg.utils import logger import datasets, models def parse_args(): parser = argparse.ArgumentParser(description='Model export.') parser.add_argument( "--config", help="The config file.", type=str, required=True) parser.add_argument( '--model_path', help='The path of model for export', type=str) parser.add_argument( '--save_dir', help='The directory for saving the exported model', type=str, default='./output/inference_model') parser.add_argument( '--output_op', choices=['argmax', 'softmax', 'none'], default="argmax", help="Select which op to be appended to output result, default: argmax") parser.add_argument( '--without_argmax', help='Do not add the argmax operation at the end of the network. [Deprecated]', action='store_true') parser.add_argument( '--with_softmax', help='Add the softmax operation at the end of the network. [Deprecated]', action='store_true') parser.add_argument( "--input_shape", nargs='+', help="Export the model with fixed input shape, such as 1 3 1024 1024.", type=int, default=None) return parser.parse_args() class SavedSegmentationNet(paddle.nn.Layer): def __init__(self, net, output_op): super().__init__() self.net = net self.output_op = output_op assert output_op in ['argmax', 'softmax'], \ "output_op should in ['argmax', 'softmax']" def forward(self, x): outs = self.net(x) new_outs = [] for out in outs: if self.output_op == 'argmax': out = paddle.argmax(out, axis=1, dtype='int32') elif self.output_op == 'softmax': out = paddle.nn.functional.softmax(out, axis=1) new_outs.append(out) return new_outs def main(args): os.environ['PADDLESEG_EXPORT_STAGE'] = 'True' cfg = Config(args.config) cfg.check_sync_info() net = cfg.model if args.model_path is not None: para_state_dict = paddle.load(args.model_path) net.set_dict(para_state_dict) logger.info('Loaded trained params of model successfully.') if args.input_shape is None: shape = [None, 3, None, None] else: shape = args.input_shape output_op = args.output_op if args.without_argmax: logger.warning( '--without_argmax will be deprecated, please use --output_op') output_op = 'none' if args.with_softmax: logger.warning( '--with_softmax will be deprecated, please use --output_op') output_op = 'softmax' new_net = net if output_op == 'none' else SavedSegmentationNet(net, output_op) new_net.eval() new_net = paddle.jit.to_static( new_net, input_spec=[paddle.static.InputSpec( shape=shape, dtype='float32')]) save_path = os.path.join(args.save_dir, 'model') paddle.jit.save(new_net, save_path) yml_file = os.path.join(args.save_dir, 'deploy.yaml') with open(yml_file, 'w') as file: transforms = cfg.export_config.get('transforms', [{ 'type': 'Normalize' }]) output_dtype = 'int32' if output_op == 'argmax' else 'float32' data = { 'Deploy': { 'model': 'model.pdmodel', 'params': 'model.pdiparams', 'transforms': transforms, 'input_shape': shape, 'output_op': output_op, 'output_dtype': output_dtype } } yaml.dump(data, file) logger.info(f'The inference model is saved in {args.save_dir}') if __name__ == '__main__': args = parse_args() main(args)