# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import paddle from paddleseg.cvlibs import manager, Config from paddleseg.utils import get_sys_env, logger from core import predictEnsemble import datasets, models def parse_args(): parser = argparse.ArgumentParser(description='Model prediction') # params of prediction parser.add_argument( "--config", dest="cfg", help="The config file.", default=None, type=str) parser.add_argument( '--model_path', dest='model_path', help='The path of model for prediction', type=str, default=None) parser.add_argument( "--config_hard", dest="cfg_hard", help="The config file.", default=None, type=str) parser.add_argument( '--model_path_hard', dest='model_path_hard', help='The path of model for prediction', type=str, default=None) parser.add_argument( '--image_path', dest='image_path', help='The path of image, it can be a file or a directory including images', type=str, default=None) parser.add_argument( '--save_dir', dest='save_dir', help='The directory for saving the predicted results', type=str, default='./output/result') # augment for prediction parser.add_argument( '--aug_pred', dest='aug_pred', help='Whether to use mulit-scales and flip augment for prediction', action='store_true') parser.add_argument( '--scales', dest='scales', nargs='+', help='Scales for augment', type=float, default=1.0) parser.add_argument( '--flip_horizontal', dest='flip_horizontal', help='Whether to use flip horizontally augment', action='store_true') parser.add_argument( '--flip_vertical', dest='flip_vertical', help='Whether to use flip vertically augment', action='store_true') # sliding window prediction parser.add_argument( '--is_slide', dest='is_slide', help='Whether to prediction by sliding window', action='store_true') parser.add_argument( '--crop_size', dest='crop_size', nargs=2, help='The crop size of sliding window, the first is width and the second is height.', type=int, default=None) parser.add_argument( '--stride', dest='stride', nargs=2, help='The stride of sliding window, the first is width and the second is height.', type=int, default=None) return parser.parse_args() def get_image_list(image_path): """Get image list""" valid_suffix = [ '.JPEG', '.jpeg', '.JPG', '.jpg', '.BMP', '.bmp', '.PNG', '.png' ] image_list = [] image_dir = None if os.path.isfile(image_path): if os.path.splitext(image_path)[-1] in valid_suffix: image_list.append(image_path) elif os.path.isdir(image_path): image_dir = image_path for root, dirs, files in os.walk(image_path): for f in files: if '.ipynb_checkpoints' in root: continue if os.path.splitext(f)[-1] in valid_suffix: image_list.append(os.path.join(root, f)) else: raise FileNotFoundError( '`--image_path` is not found. it should be an image file or a directory including images' ) if len(image_list) == 0: raise RuntimeError('There are not image file in `--image_path`') return image_list, image_dir def main(args): env_info = get_sys_env() place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used'] else 'cpu' paddle.set_device(place) if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config(args.cfg) val_dataset = cfg.val_dataset cfg_hard = Config(args.cfg_hard) if not val_dataset: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model model_hard = cfg_hard.model transforms = val_dataset.transforms image_list, image_dir = get_image_list(args.image_path) logger.info('Number of predict images = {}'.format(len(image_list))) predictEnsemble( model, model_hard, model_path=args.model_path, model_path_hard=args.model_path_hard, transforms=transforms, image_list=image_list, image_dir=image_dir, save_dir=args.save_dir, aug_pred=args.aug_pred, scales=args.scales, flip_horizontal=args.flip_horizontal, flip_vertical=args.flip_vertical, is_slide=args.is_slide, crop_size=args.crop_size, stride=args.stride, ) if __name__ == '__main__': args = parse_args() main(args)