# AutoNUE@CVPR 2021 Challenge Implementation of the 1st solution for AutoNUE@CVPR 2021 Challenge Semenatic Segmentation Track based on PaddlePaddle. ## Installation #### step 1. Install PaddlePaddle System Requirements: * PaddlePaddle == 2.0.2 * Python >= 3.6+ Highly recommend you install the GPU version of PaddlePaddle, due to large overhead of segmentation models, otherwise it could be out of memory while running the models. For more detailed installation tutorials, please refer to the official website of [PaddlePaddle](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/2.0/install/)。 #### step 2. Install PaddleSeg You should use *API Calling* method to install PaddleSeg for flexible development. ```shell pip install paddleseg==2.5.0 ``` ## Data Preparation Firstly, you need to to download and convert the [India Driving Dataset](https://idd.insaan.iiit.ac.in/evaluation/autonue21/#bm5) following the instructions of Segmentation Track. IDD_Dectection dataset also need for pseudo-labeling. And then, you need to organize data following the below structure. IDD_Segmentation | |--leftImg8bit | |--train | |--val | |--test | |--gtFine | |--train | |--val | |--test We make three contributions and managed to rank 1st. - Progressively Segmentation - Leverage IDD_Detection Dataset to generate extre training samples by pseudo-labeling. - Decoder-enhanced Swin Transformer ## Training ### Baseline 1. Download pretrained weights on Mapillary. ```shell mkdir -p pretrain && cd pretrain wget https://bj.bcebos.com/paddleseg/dygraph/cityscapes/ocrnet_hrnetw48_mapillary/pretrained.pdparams cd .. ``` 2. Modify `scripts/train.py` line 27 with `from core.val import evaluate` 3. Run the training script. ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -u -m paddle.distributed.launch train.py \ --config configs/sscale_auto_nue_map+city@1920.yml --use_vdl \ --save_dir saved_model/sscale_auto_nue_map+city@1920 --save_interval 2000 --num_workers 2 --do_eval ``` ### Regional progressive segmentation 1. Replace `scripts/train.py` line 27 'from core.val import evaluate' with `from core.val_crop import evaluate` 2. Run ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -u -m paddle.distributed.launch train.py \ --config configs/auto_nue_map+city_crop.yml --use_vdl \ --save_dir saved_model/auto_nue_map+city_crop --save_interval 2000 --num_workers 2 --do_eval ``` ### Pseudo-labeling First you need to organize the IDD_Detection dataset as follow: IDD_Detection | |--JPEGImages |--Annotations where `JPEGImages` and `Annotation` are images and xml files collected from `IDD_Detection/FrontFar` and `IDD_Detection/FrontNear` two folders. And Then: 1. Replace `AutoNUE21/predict.py` line 22 `from paddleseg.core import predict` with `from core.predict_generate_autolabel.py import predictAutolabel` 2. Modity `AutoNUE21/predict.py` line 156 `predict(` with `predictAutolabel(` 3. Run ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch predict.py --config configs/sscale_auto_nue_map+city@1920.yml --model_path saved_model/sscale_auto_nue_map+city@1920/best_model/model.pdparams --image_path data/IDD_Detection/JPEGImages --save_dir detection_out --aug_pred --scales 1.0 1.5 2.0 --flip_horizontal ``` 4. Auto-box `traffic lights` and `traffic sign` two classes from bounding box annotation by running `tools/IDD_labeling.py` 5. Put the generated `pred_refine` folder under `data/IDD_Detection` 5. Modify `scripts/train.py` line 27 with `from core.val import evaluate` 6. Train these pseudo labels with fine-annotated sample: ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -u -m paddle.distributed.launch train.py \ --config configs/auto_nue_auto_label.yml --use_vdl \ --save_dir saved_model/auto_nue_auto_label --save_interval 2000 --num_workers 2 --do_eval ``` ### Decoder-enhanced Swin Transformer 1. Download pretrained weights on Mapillary. ```shell cd pretrain wget https://bj.bcebos.com/paddleseg/dygraph/cityscapes/swin_mla_p4w7_mapillary/pretrained_swin.pdparams cd .. ``` 2. Run the training script. ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -u -m paddle.distributed.launch train.py \ --config configs/swin_transformer_mla_base_patch4_window7_160k_autonue.yml --use_vdl \ --save_dir saved_model/swin_transformer_mla_autonue --save_interval 2000 --num_workers 2 --do_eval ``` 3. Run the testing script. ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch predict.py --config configs/swin_transformer_mla_base_patch4_window7_160k_autonue.yml --model_path saved_model/swin_transformer_mla_autonue/best_model/model.pdparams --image_path data/IDD_Segmentation/leftImg8bit/test/ --save_dir test_out_swin --aug_pred --scales 1.0 1.5 2.0 --flip_horizontal ``` ## Ensemble Testing We provide a predict script for ensembling `baseline`, `pseudo-labeling` and `rps`. Just running: ```shell CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m paddle.distributed.launch predict_ensemble_three.py --config configs/sscale_auto_nue_map+city@1920.yml --config_1 configs/auto_nue_auto_label.yml --config_crop configs/auto_nue_map+city_crop.yml --model_path saved_model/sscale_auto_nue_map+city@1920/best_model/model.pdparams --model_path_1 saved_model/auto_nue_auto_label/best_model/model.pdparams --model_path_crop saved_model/auto_nue_map+city_crop/best_model/model.pdparams --image_path data/IDD_Segmentation/leftImg8bit/test/ --save_dir test_out --aug_pred --scales 1.0 1.5 2.0 --flip_horizontal ```