batch_size: 4 iters: 40000 train_dataset: type: PascalContext dataset_root: data/VOC2010/ transforms: - type: ResizeStepScaling min_scale_factor: 0.5 max_scale_factor: 2.0 scale_step_size: 0.25 - type: RandomPaddingCrop crop_size: [520, 520] - type: RandomHorizontalFlip - type: RandomDistort brightness_range: 0.4 contrast_range: 0.4 saturation_range: 0.4 - type: Normalize mode: train val_dataset: type: PascalContext dataset_root: data/VOC2010/ transforms: - type: Padding target_size: [520, 520] - type: Normalize mode: val optimizer: type: sgd momentum: 0.9 weight_decay: 4.0e-5 lr_scheduler: type: PolynomialDecay learning_rate: 0.001 end_lr: 0 power: 0.9 loss: types: - type: CrossEntropyLoss coef: [1]