train_dataset: type: AutoNUE dataset_root: data/IDD_Segmentation transforms: - type: Resize target_size: [1920, 1080] - type: ResizeStepScaling min_scale_factor: 0.5 max_scale_factor: 2.0 scale_step_size: 0.25 - type: RandomPaddingCrop crop_size: [1024, 512] - type: RandomHorizontalFlip - type: RandomDistort brightness_range: 0.25 brightness_prob: 1 contrast_range: 0.25 contrast_prob: 1 saturation_range: 0.25 saturation_prob: 1 hue_range: 63 hue_prob: 1 - type: Normalize mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] mode: train val_dataset: type: AutoNUE dataset_root: data/IDD_Segmentation transforms: - type: Resize target_size: [1920, 1080] - type: Normalize mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] mode: val optimizer: type: sgd momentum: 0.9 weight_decay: 0.0001 lr_scheduler: type: PolynomialDecay learning_rate: 0.005 end_lr: 0 power: 2