# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys from collections import defaultdict import random import numpy as np import paddle import paddle.nn as nn from paddleseg.cvlibs import manager, Config from paddleseg.utils import get_sys_env, logger LOCAL_PATH = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(LOCAL_PATH, '..')) manager.BACKBONES._components_dict.clear() manager.TRANSFORMS._components_dict.clear() import ppmatting from ppmatting.core import train def parse_args(): parser = argparse.ArgumentParser(description='Model training') parser.add_argument( "--config", dest="cfg", help="The config file.", default=None, type=str) parser.add_argument( '--iters', dest='iters', help='iters for training', type=int, default=None) parser.add_argument( '--batch_size', dest='batch_size', help='Mini batch size of one gpu or cpu', type=int, default=None) parser.add_argument( '--learning_rate', dest='learning_rate', help='Learning rate', type=float, default=None) parser.add_argument( '--save_interval', dest='save_interval', help='How many iters to save a model snapshot once during training.', type=int, default=1000) parser.add_argument( '--resume_model', dest='resume_model', help='The path of resume model', type=str, default=None) parser.add_argument( '--save_dir', dest='save_dir', help='The directory for saving the model snapshot', type=str, default='./output') parser.add_argument( '--keep_checkpoint_max', dest='keep_checkpoint_max', help='Maximum number of checkpoints to save', type=int, default=5) parser.add_argument( '--num_workers', dest='num_workers', help='Num workers for data loader', type=int, default=0) parser.add_argument( '--do_eval', dest='do_eval', help='Eval while training', action='store_true') parser.add_argument( '--metrics', dest='metrics', nargs='+', help='The metrics to evaluate, it may be the combination of ("sad", "mse", "grad", "conn")', type=str, default='sad') parser.add_argument( '--log_iters', dest='log_iters', help='Display logging information at every log_iters', default=10, type=int) parser.add_argument( '--use_vdl', dest='use_vdl', help='Whether to record the data to VisualDL during training', action='store_true') parser.add_argument( '--eval_begin_iters', dest='eval_begin_iters', help='The iters begin evaluation.', default=0, type=int) parser.add_argument( '--seed', dest='seed', help='Set the random seed during training.', default=None, type=int) parser.add_argument( "--precision", default="fp32", type=str, choices=["fp32", "fp16"], help="Use AMP (Auto mixed precision) if precision='fp16'. If precision='fp32', the training is normal." ) parser.add_argument( "--amp_level", default="O1", type=str, choices=["O1", "O2"], help="Auto mixed precision level. Accepted values are “O1” and “O2”: O1 represent mixed precision, the input \ data type of each operator will be casted by white_list and black_list; O2 represent Pure fp16, all operators \ parameters and input data will be casted to fp16, except operators in black_list, don’t support fp16 kernel \ and batchnorm. Default is O1(amp)") parser.add_argument( '--profiler_options', type=str, default=None, help='The option of train profiler. If profiler_options is not None, the train ' \ 'profiler is enabled. Refer to the paddleseg/utils/train_profiler.py for details.' ) parser.add_argument( '--repeats', type=int, default=1, help="Repeat the samples in the dataset for `repeats` times in each epoch." ) parser.add_argument( '--device', dest='device', help='Set the device type, which may be GPU, CPU or XPU.', default='gpu', type=str) return parser.parse_args() def main(args): if args.seed is not None: paddle.seed(args.seed) np.random.seed(args.seed) random.seed(args.seed) env_info = get_sys_env() info = ['{}: {}'.format(k, v) for k, v in env_info.items()] info = '\n'.join(['', format('Environment Information', '-^48s')] + info + ['-' * 48]) logger.info(info) place = args.device if place == 'gpu' and env_info['Paddle compiled with cuda'] and env_info[ 'GPUs used']: paddle.set_device('gpu') elif place == 'xpu' and paddle.is_compiled_with_xpu(): paddle.set_device('xpu') else: paddle.set_device('cpu') if not args.cfg: raise RuntimeError('No configuration file specified.') cfg = Config( args.cfg, learning_rate=args.learning_rate, iters=args.iters, batch_size=args.batch_size) train_dataset = cfg.train_dataset if train_dataset is None: raise RuntimeError( 'The training dataset is not specified in the configuration file.') elif len(train_dataset) == 0: raise ValueError( 'The length of train_dataset is 0. Please check if your dataset is valid' ) if args.repeats > 1: train_dataset.fg_bg_list *= args.repeats val_dataset = cfg.val_dataset if args.do_eval else None msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model if place == 'gpu' and paddle.distributed.ParallelEnv().nranks > 1: # convert bn to sync_bn model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model) train( model, train_dataset=train_dataset, val_dataset=val_dataset, optimizer=cfg.optimizer, iters=cfg.iters, batch_size=cfg.batch_size, num_workers=args.num_workers, use_vdl=args.use_vdl, save_interval=args.save_interval, log_iters=args.log_iters, resume_model=args.resume_model, save_dir=args.save_dir, eval_begin_iters=args.eval_begin_iters, metrics=args.metrics, precision=args.precision, amp_level=args.amp_level, profiler_options=args.profiler_options) if __name__ == '__main__': args = parse_args() main(args)