"...targets/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "e1e37208c5b19939acb3bedc07b3a3abc8daf355"
Commit 0d97cc8c authored by Sugon_ldc's avatar Sugon_ldc
Browse files

add new model

parents
Pipeline #316 failed with stages
in 0 seconds
_base_: './base_cfg.yml'
model:
type: OCRNet
backbone:
type: HRNet_W18
pretrained: https://bj.bcebos.com/paddleseg/dygraph/hrnet_w18_ssld.tar.gz
backbone_indices: [0]
loss:
types:
- type: MixedLoss
losses:
- type: OhemCrossEntropyLoss
min_kept: 65000
- type: LovaszSoftmaxLoss
coef: [0.8, 0.2]
coef: [1, 0.4]
\ No newline at end of file
_base_: './base_cfg.yml'
model:
type: PPLiteSeg
backbone:
type: STDC1
pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
arm_out_chs: [32, 64, 128]
seg_head_inter_chs: [32, 64, 64]
loss:
types:
- type: MixedLoss
losses:
- type: OhemCrossEntropyLoss
min_kept: 65000
- type: LovaszSoftmaxLoss
coef: [0.8, 0.2]
coef: [1, 1, 1]
\ No newline at end of file
_base_: './base_cfg.yml'
model:
type: PPLiteSeg
backbone:
type: STDC2
pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet2.tar.gz
loss:
types:
- type: MixedLoss
losses:
- type: OhemCrossEntropyLoss
min_kept: 65000
- type: LovaszSoftmaxLoss
coef: [0.8, 0.2]
coef: [1, 1, 1]
\ No newline at end of file
_base_: './base_cfg.yml'
model:
type: SFNet
backbone:
type: ResNet18_vd
output_stride: 8
pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet18_vd_ssld_v2.tar.gz
backbone_indices: [0, 1, 2, 3]
loss:
types:
- type: MixedLoss
losses:
- type: OhemCrossEntropyLoss
min_kept: 65000
- type: LovaszSoftmaxLoss
coef: [0.8, 0.2]
coef: [1]
\ No newline at end of file
# Rethinking BiSeNet For Real-time Semantic Segmentation
## Reference
> Fan, Mingyuan, Shenqi Lai, Junshi Huang, Xiaoming Wei, Zhenhua Chai, Junfeng Luo, and Xiaolin Wei. "Rethinking BiSeNet For Real-time Semantic Segmentation." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9716-9725. 2021.
## Performance
### CityScapes
| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links |
|---|---|---|---|---|---|---|---|
|STDC1-Seg50|STDC1|1024x512|80000|74.74%|75.71%|76.64%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/stdc1_seg_cityscapes_1024x512_80k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/stdc1_seg_cityscapes_1024x512_80k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=f450fdef2b3b02574e3eb293242d1fbd) |
|STDC2-Seg50|STDC2|1024x512|80000|77.60%|78.32%|78.83%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/stdc2_seg_cityscapes_1024x512_80k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/stdc2_seg_cityscapes_1024x512_80k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=1f9c39f10e94327803faae96a516a7a6) |
### Pascal VOC 2012 + Aug
| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links |
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|STDC1-Seg50|STDC1|512x512|40000|68.06%|68.48%|69.04%|[model](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/stdc1_seg_voc12aug_512x512_40k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/stdc1_seg_voc12aug_512x512_40k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=86061db4140c995922b033f96945d3da) |
|STDC2-Seg50|STDC2|512x512|40000|68.98%|70.07%|69.99%|[model](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/stdc2_seg_voc12aug_512x512_40k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/stdc2_seg_voc12aug_512x512_40k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=46d5d3cead36ee9d16df1d06b121b3bc) |
_base_: '../_base_/cityscapes.yml'
batch_size: 12
iters: 80000
model:
type: STDCSeg
backbone:
type: STDC1
pretrained: https://bj.bcebos.com/paddleseg/dygraph/STDCNet1.tar.gz
pretrained: null
loss:
types:
- type: OhemCrossEntropyLoss
- type: OhemCrossEntropyLoss
- type: OhemCrossEntropyLoss
- type: DetailAggregateLoss
coef: [1, 1, 1, 1]
_base_: '../_base_/pascal_voc12aug.yml'
model:
type: STDCSeg
backbone:
type: STDC1
pretrained: https://bj.bcebos.com/paddleseg/dygraph/STDCNet1.tar.gz
pretrained: null
loss:
types:
- type: OhemCrossEntropyLoss
- type: OhemCrossEntropyLoss
- type: OhemCrossEntropyLoss
- type: DetailAggregateLoss
coef: [1, 1, 1, 1]
_base_: 'stdc1_seg_cityscapes_1024x512_80k.yml'
model:
backbone:
type: STDC2
pretrained: https://bj.bcebos.com/paddleseg/dygraph/STDCNet2.tar.gz
_base_: 'stdc1_seg_voc12aug_512x512_40k.yml'
model:
backbone:
type: STDC2
pretrained: https://bj.bcebos.com/paddleseg/dygraph/STDCNet2.tar.gz
# TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation
## Reference
> Zhang, Wenqiang, Zilong Huang, Guozhong Luo, Tao Chen, Xinggang Wang, Wenyu Liu, Gang Yu,and Chunhua Shen. "TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12083-12093. 2022.
## Performance
### ADE20k
| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links |
|---|---|---|---|---|---|---|---|
|TopFormer-Base |topformer|512x512|160000| 38.28% | 38.59% | - |[model](https://paddleseg.bj.bcebos.com/dygraph/ade20k/topformer_base_ade20k_512x512_160k/model.pdparams) \| [log](https://paddleseg.bj.bcebos.com/dygraph/ade20k/topformer_base_ade20k_512x512_160k/log_train.txt) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=1530ee894b33a363677472fdcae5d13a) |
|TopFormer-Small|topformer|512x512|160000| 35.60% | 35.83% | - |[model](https://paddleseg.bj.bcebos.com/dygraph/ade20k/topformer_small_ade20k_512x512_160k/model.pdparams) \| [log](https://paddleseg.bj.bcebos.com/dygraph/ade20k/topformer_small_ade20k_512x512_160k/log_train.txt) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=c6070db4366510a20d47fb4645797a27) |
|TopFormer-Tiny |topformer|512x512|160000| 32.49% | 32.75% | - |[model](https://paddleseg.bj.bcebos.com/dygraph/ade20k/topformer_tiny_ade20k_512x512_160k/model.pdparams) \| [log](https://paddleseg.bj.bcebos.com/dygraph/ade20k/topformer_tiny_ade20k_512x512_160k/log_train.txt) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=462723f835db022d3eba1b4db87350e3) |
Note that, the input resulution of TopFormer should be a multiple of 32.
_base_: '../_base_/ade20k.yml'
batch_size: 4 # total batch size is 16
iters: 160000
train_dataset:
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [512, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
val_dataset:
transforms:
- type: Resize
target_size: [2048, 512]
keep_ratio: True
size_divisor: 32
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
export:
transforms:
- type: Resize
target_size: [2048, 512]
keep_ratio: True
size_divisor: 32
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
optimizer:
_inherited_: False
type: AdamW
weight_decay: 0.01
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.0012
end_lr: 0
power: 1.0
warmup_iters: 1500
warmup_start_lr: 1.0e-6
loss:
types:
- type: CrossEntropyLoss
coef: [1]
model:
type: TopFormer
backbone:
type: TopTransformer_Base
lr_mult: 0.1
pretrained: https://paddleseg.bj.bcebos.com/dygraph/backbone/topformer_base_imagenet_pretrained.zip
\ No newline at end of file
_base_: '../_base_/ade20k.yml'
batch_size: 4 # total batch size is 16
iters: 160000
train_dataset:
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [512, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
val_dataset:
transforms:
- type: Resize
target_size: [2048, 512]
keep_ratio: True
size_divisor: 32
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
export:
transforms:
- type: Resize
target_size: [2048, 512]
keep_ratio: True
size_divisor: 32
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
optimizer:
_inherited_: False
type: AdamW
weight_decay: 0.01
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.0012
end_lr: 0
power: 1.0
warmup_iters: 1500
warmup_start_lr: 1.0e-6
loss:
types:
- type: CrossEntropyLoss
coef: [1]
model:
type: TopFormer
backbone:
type: TopTransformer_Small
lr_mult: 0.1
pretrained: https://paddleseg.bj.bcebos.com/dygraph/backbone/topformer_small_imagenet_pretrained.zip
\ No newline at end of file
_base_: '../_base_/ade20k.yml'
batch_size: 4 # total batch size is 16
iters: 160000
train_dataset:
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [512, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
val_dataset:
transforms:
- type: Resize
target_size: [2048, 512]
keep_ratio: True
size_divisor: 32
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
export:
transforms:
- type: Resize
target_size: [2048, 512]
keep_ratio: True
size_divisor: 32
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
optimizer:
_inherited_: False
type: AdamW
weight_decay: 0.01
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.0012
end_lr: 0
power: 1.0
warmup_iters: 1500
warmup_start_lr: 1.0e-6
loss:
types:
- type: CrossEntropyLoss
coef: [1]
model:
type: TopFormer
head_use_dw: True
backbone:
type: TopTransformer_Tiny
lr_mult: 0.1
pretrained: https://paddleseg.bj.bcebos.com/dygraph/backbone/topformer_tiny_imagenet_pretrained.zip
\ No newline at end of file
# U2-Net: Going deeper with nested U-structure for salient object detection
## Reference
> Qin, Xuebin, Zichen Zhang, Chenyang Huang, Masood Dehghan, Osmar R. Zaiane, and Martin Jagersand. "U2-Net: Going deeper with nested U-structure for salient object detection." Pattern Recognition 106 (2020): 107404.
_base_: '../_base_/cityscapes.yml'
batch_size: 4
iters: 160000
model:
type: U2Net
num_classes: 19
pretrained: Null
loss:
coef: [1, 1, 1, 1, 1, 1, 1]
_base_: '../_base_/cityscapes.yml'
batch_size: 4
iters: 160000
model:
type: U2Netp
num_classes: 19
pretrained: Null
loss:
coef: [1, 1, 1, 1, 1, 1, 1]
# U-HRNet: Delving into Improving Semantic Representation of High Resolution Network for Dense Prediction
## Reference
> Jian Wang, Xiang Long, Guowei Chen, Zewu Wu, Zeyu Chen, Errui Ding et al. "U-HRNet: Delving into Improving Semantic Representation of High Resolution Network for Dense Prediction" arXiv preprint arXiv:2210.07140 (2022).
## Performance
### Cityscapes
| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links |
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|FCN|UHRNet_W18_small|1024x512|80000|77.66%|78.26%|78.47%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_uhrnetw18_small_cityscapes_1024x512_80k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_uhrnetw18_small_cityscapes_1024x512_80k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=9cb0e961bc1f89d3484190f9d4de550b)|
|FCN|UHRNet_W18_small|1024x512|120000|78.39%|79.09%|79.03%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_uhrnetw18_small_cityscapes_1024x512_120k_bs3/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_uhrnetw18_small_cityscapes_1024x512_120k_bs3/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=6f6c41e46cf8b26d3a941bf7e09698f8)|
|FCN|UHRNet_W48|1024x512|80000|81.28%|81.76%|81.48%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_uhrnetw48_cityscapes_1024x512_80k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_uhrnetw48_cityscapes_1024x512_80k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=1c2fbc3a5558d530c2a1fc8c2cd34da5)|
|FCN|UHRNet_W48|1024x512|120000|81.91%|82.39%|82.28%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_uhrnetw48_cityscapes_1024x512_120k_bs3/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/fcn_uhrnetw48_cityscapes_1024x512_120k_bs3/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=a94e548519f9487c435530532f7a027c)|
_base_: './fcn_uhrnetw18_small_cityscapes_1024x512_80k.yml'
batch_size: 3
iters: 120000
_base_: '../_base_/cityscapes.yml'
model:
type: FCN
backbone:
type: UHRNet_W18_Small
align_corners: False
pretrained: https://bj.bcebos.com/paddleseg/dygraph/backbone/uhrnetw18_small_imagenet.tar.gz
num_classes: 19
pretrained: Null
backbone_indices: [-1]
optimizer:
weight_decay: 0.0005
_base_: './fcn_uhrnetw48_cityscapes_1024x512_80k.yml'
batch_size: 3
iters: 120000
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment