Commit 0d97cc8c authored by Sugon_ldc's avatar Sugon_ldc
Browse files

add new model

parents
Pipeline #316 failed with stages
in 0 seconds
batch_size: 4
iters: 80000
train_dataset:
type: CocoStuff
dataset_root: data/cocostuff/
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [520, 520]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mode: train
val_dataset:
type: CocoStuff
dataset_root: data/cocostuff/
transforms:
- type: Normalize
mode: val
optimizer:
type: sgd
momentum: 0.9
weight_decay: 4.0e-5
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.01
end_lr: 0
power: 0.9
loss:
types:
- type: CrossEntropyLoss
coef: [1]
batch_size: 16
iters: 40000
train_dataset:
type: DRIVE
dataset_root: data/DRIVE
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [128, 128]
- type: RandomHorizontalFlip
- type: RandomVerticalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mode: train
val_dataset:
type: DRIVE
dataset_root: data/DRIVE
transforms:
- type: Normalize
mode: val
optimizer:
type: sgd
momentum: 0.9
weight_decay: 4.0e-5
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.01
end_lr: 0
power: 0.9
loss:
types:
- type: DiceLoss
coef: [1]
test_config:
auc_roc: True
batch_size: 16
iters: 40000
train_dataset:
type: HRF
dataset_root: data/HRF
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [256, 256]
- type: RandomHorizontalFlip
- type: RandomVerticalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mode: train
val_dataset:
type: HRF
dataset_root: data/HRF
transforms:
- type: ResizeByLong
long_size: 1280
- type: Normalize
mode: val
optimizer:
type: sgd
momentum: 0.9
weight_decay: 4.0e-5
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.01
end_lr: 0
power: 0.9
loss:
types:
- type: DiceLoss
coef: [1]
test_config:
auc_roc: True
batch_size: 4
iters: 40000
train_dataset:
type: PascalContext
dataset_root: data/VOC2010/
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [520, 520]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mode: train
val_dataset:
type: PascalContext
dataset_root: data/VOC2010/
transforms:
- type: Padding
target_size: [520, 520]
- type: Normalize
mode: val
optimizer:
type: sgd
momentum: 0.9
weight_decay: 4.0e-5
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.001
end_lr: 0
power: 0.9
loss:
types:
- type: CrossEntropyLoss
coef: [1]
batch_size: 4
iters: 40000
train_dataset:
type: PascalVOC
dataset_root: data/VOCdevkit/
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [512, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mode: train
val_dataset:
type: PascalVOC
dataset_root: data/VOCdevkit/
transforms:
- type: Padding
target_size: [512, 512]
- type: Normalize
mode: val
optimizer:
type: sgd
momentum: 0.9
weight_decay: 4.0e-5
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.01
end_lr: 0
power: 0.9
loss:
types:
- type: CrossEntropyLoss
coef: [1]
_base_: './pascal_voc12.yml'
train_dataset:
mode: trainaug
batch_size: 16
iters: 40000
train_dataset:
type: STARE
dataset_root: data/STARE
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [128, 128]
- type: RandomHorizontalFlip
- type: RandomVerticalFlip
- type: RandomDistort
brightness_range: 0.4
contrast_range: 0.4
saturation_range: 0.4
- type: Normalize
mode: train
val_dataset:
type: STARE
dataset_root: data/STARE
transforms:
- type: Normalize
mode: val
optimizer:
type: sgd
momentum: 0.9
weight_decay: 4.0e-5
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.01
end_lr: 0
power: 0.9
loss:
types:
- type: DiceLoss
coef: [1]
test_config:
auc_roc: True
# Asymmetric Non-local Neural Networks for Semantic Segmentation
## Reference
> Zhu, Zhen, Mengde Xu, Song Bai, Tengteng Huang, and Xiang Bai. "Asymmetric non-local neural networks for semantic segmentation." In Proceedings of the IEEE International Conference on Computer Vision, pp. 593-602. 2019.
## Performance
### Cityscapes
| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links |
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|ANN|ResNet50_OS8|1024x512|80000|79.09%|79.31%|79.56%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/ann_resnet50_os8_cityscapes_1024x512_80k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/ann_resnet50_os8_cityscapes_1024x512_80k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=b849c8e06b6ccd33514d436635b9e102)|
|ANN|ResNet101_OS8|1024x512|80000|80.61%|80.98%|81.25%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/ann_resnet101_os8_cityscapes_1024x512_80k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/ann_resnet101_os8_cityscapes_1024x512_80k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=ed1cb9321385f1480dda418db71bd4c0)|
### Pascal VOC 2012 + Aug
| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links |
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|ANN|ResNet50_OS8|512x512|40000|80.82%|81.10%|81.42%|[model](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/ann_resnet50_os8_voc12aug_512x512_40k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/ann_resnet50_os8_voc12aug_512x512_40k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=3a5e7bc1b44c3f552f73bdbe569e5a76)|
|ANN|ResNet101_OS8|512x512|40000|79.62%|79.84%|80.05%|[model](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/ann_resnet101_os8_voc12aug_512x512_40k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/pascal_voc12/ann_resnet101_os8_voc12aug_512x512_40k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=02c57c64c72cf87cf3b3d5b2373399a0)|
_base_: 'ann_resnet50_os8_cityscapes_1024x512_80k.yml'
model:
backbone:
type: ResNet101_vd
pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet101_vd_ssld.tar.gz
_base_: 'ann_resnet50_os8_voc12aug_512x512_40k.yml'
model:
backbone:
type: ResNet101_vd
pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet101_vd_ssld.tar.gz
_base_: '../_base_/cityscapes.yml'
batch_size: 2
iters: 80000
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.01
power: 0.9
end_lr: 1.0e-5
loss:
types:
- type: CrossEntropyLoss
coef: [1, 0.4]
model:
type: ANN
backbone:
type: ResNet50_vd
output_stride: 8
pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet50_vd_ssld_v2.tar.gz
backbone_indices: [2, 3]
key_value_channels: 256
inter_channels: 512
psp_size: [1, 3, 6, 8]
enable_auxiliary_loss: True
align_corners: False
pretrained: null
_base_: '../_base_/pascal_voc12aug.yml'
loss:
types:
- type: CrossEntropyLoss
coef: [1, 0.4]
model:
type: ANN
backbone:
type: ResNet50_vd
output_stride: 8
pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet50_vd_ssld_v2.tar.gz
backbone_indices: [2, 3]
key_value_channels: 256
inter_channels: 512
psp_size: [1, 3, 6, 8]
enable_auxiliary_loss: True
align_corners: False
pretrained: null
# Attention U-Net: Learning Where to Look for the Pancreas
## Reference
> Oktay, Ozan, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa, Kensaku Mori et al. "Attention u-net: Learning where to look for the pancreas." arXiv preprint arXiv:1804.03999 (2018).
_base_: '../_base_/cityscapes.yml'
batch_size: 2
iters: 80000
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.05
end_lr: 0.0
power: 0.9
model:
type: AttentionUNet
pretrained: Null
# BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation
## Reference
> Yu, Changqian, Changxin Gao, Jingbo Wang, Gang Yu, Chunhua Shen, and Nong Sang. "BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation." arXiv preprint arXiv:2004.02147 (2020).
## Performance
### Cityscapes
| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links |
|-|-|-|-|-|-|-|-|
|BiSeNetv2|-|1024x1024|160000|73.19%|74.19%|74.43%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/bisenetv1_resnet18_os8_cityscapes_1024x512_160k/model.pdparams) \| [log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/bisenetv1_resnet18_os8_cityscapes_1024x512_160k/train.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=3ccfaff613de769eadb76f8379afffa5)|
_base_: '../_base_/cityscapes_1024x1024.yml'
model:
type: BiSeNetV2
num_classes: 19
optimizer:
type: sgd
weight_decay: 0.0005
loss:
types:
- type: CrossEntropyLoss
- type: CrossEntropyLoss
- type: CrossEntropyLoss
- type: CrossEntropyLoss
- type: CrossEntropyLoss
coef: [1, 1, 1, 1, 1]
batch_size: 4
iters: 160000
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.05
end_lr: 0.0
power: 0.9
# BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation
## Reference
> Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong Sang. "BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation." In Proceedings of the European conference on computer vision (ECCV), pp. 325-341. 2018.
## Performance
### Cityscapes
| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links |
|-|-|-|-|-|-|-|-|
|BiSeNetV1|-|1024x512|160000|75.19%|75.99%|76.77%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/bisenetv1_cityscapes_1024x512_160k/model.pdparams)\|[log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/bisenetv1_cityscapes_1024x512_160k/train.log)\|[vdl](https://www.paddlepaddle.org.cn/paddle/visualdl/service/app/scalar?id=d2807bd39677b369ee84054e46a3df96)|
_base_: '../_base_/cityscapes.yml'
batch_size: 4
iters: 160000
model:
type: BiseNetV1
backbone:
type: ResNet18_vd
output_stride: 8
pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet18_vd_ssld_v2.tar.gz
optimizer:
type: sgd
weight_decay: 0.0005
loss:
types:
- type: OhemCrossEntropyLoss
- type: OhemCrossEntropyLoss
- type: OhemCrossEntropyLoss
coef: [1, 1, 1]
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.01
end_lr: 0.0
power: 0.9
# CCNet: Criss-cross attention for semantic segmentation
## Reference
> Zilong Huang, Xinggang Wang, Yunchao Wei, Lichao Huang, Humphrey Shi, Wenyu Liu, Thomas S. Huang. "CCNet: Criss-cross attention for semantic segmentation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
## Performance
### Cityscapes
| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links |
|-|-|-|-|-|-|-|-|
|CCNet|ResNet101_OS8|769x769|60000|80.95%|81.23%|81.32%|[model](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/ccnet_resnet101_os8_cityscapes_769x769_60k/model.pdparams)\|[log](https://bj.bcebos.com/paddleseg/dygraph/cityscapes/ccnet_resnet101_os8_cityscapes_769x769_60k/train.log)\|[vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=6828616e27a1e15f1442beb3b4834048)|
_base_: '../_base_/cityscapes_769x769.yml'
batch_size: 2
iters: 60000
model:
type: CCNet
backbone:
type: ResNet101_vd
output_stride: 8
pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet101_vd_ssld.tar.gz
backbone_indices: [2, 3]
enable_auxiliary_loss: True
dropout_prob: 0.1
recurrence: 2
loss:
types:
- type: OhemCrossEntropyLoss
- type: CrossEntropyLoss
coef: [1, 0.4]
lr_scheduler:
type: PolynomialDecay
learning_rate: 0.01
power: 0.9
end_lr: 1.0e-4
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment