predictor.py 10 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import sys
import logging

logging.getLogger().setLevel(logging.ERROR)

import numpy as np
from copy import deepcopy

sys.path.append(
    os.path.join(os.path.dirname(os.path.realpath(__file__)), "./.."))

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.inference import create_predictor, Config

from inference.ops import DistMaps3D, ScaleLayer, BatchImageNormalize3D, SigmoidForPred


class Click:
    def __init__(self, is_positive, coords, indx=None):
        if coords is None or is_positive is None:
            raise ValueError(
                "The coord is {}, is_positive is {} and one of them is None, but none of them should be."
            )
        self.coords = coords
        self.is_positive = is_positive
        self.index = None

    @property
    def coords_and_indx(self):
        return (*self.coords, )

    def copy(self, **kwargs):
        self_copy = deepcopy(self)
        for k, v in kwargs.items():
            setattr(self_copy, k, v)
        return self_copy


class BasePredictor(object):
    def __init__(self,
                 model_path,
                 param_path,
                 net_clicks_limit=None,
                 with_mask=True,
                 norm_radius=2,
                 spatial_scale=1.0,
                 device="gpu",
                 enable_mkldnn=False,
                 **kwargs):

        self.net_clicks_limit = net_clicks_limit
        self.original_image = None
        self.prev_prediction = None
        self.model_indx = 0
        self.click_models = None
        self.net_state_dict = None
        self.with_prev_mask = with_mask
        self.device = device
        self.enable_mkldnn = enable_mkldnn
        if not paddle.in_dynamic_mode():
            paddle.disable_static()
        self.normalization = BatchImageNormalize3D(
            [0.00040428873, ],
            [0.00059983705, ], )

        self.transforms = [SigmoidForPred()]  # apply sigmoid after pred

        # !! Todo Set the radius and spatial_scale here
        self.dist_maps = DistMaps3D(
            norm_radius=norm_radius,
            spatial_scale=spatial_scale,
            cpu_mode=False,
            use_disks=True)

        # init predictor config
        self.pred_cfg = Config(model_path, param_path)
        self.pred_cfg.disable_glog_info()
        self.pred_cfg.enable_memory_optim()
        self.pred_cfg.switch_ir_optim(True)

        if self.device == "cpu":
            self._init_cpu_config()
        else:
            self._init_gpu_config()

        self.predictor = create_predictor(self.pred_cfg)

    def _init_gpu_config(self):
        logging.info("Use NVIDIA GPU")
        self.pred_cfg.enable_use_gpu(100, 0)

    def _init_cpu_config(self):
        logging.info("Use x86 CPU")
        self.pred_cfg.disable_gpu()
        if self.enable_mkldnn:
            logging.info("Use MKLDNN")
            # cache 10 different shapes for mkldnn
            # self.pred_cfg.set_mkldnn_cache_capacity(10)  # cannot use on MAC
            self.pred_cfg.enable_mkldnn()
        self.pred_cfg.set_cpu_math_library_num_threads(10)

    def set_input_image(self, image):  # (1, 12, 512, 512)
        # image is np array or other format including scalar,tuple,list,and paddle.Tensor
        self.original_image = paddle.to_tensor(image).astype(
            "float32") / 255  # 1, 512, 512, 12]

        for transform in self.transforms:
            transform.reset()

        if len(self.original_image.shape) == 4:
            self.original_image = self.original_image.unsqueeze(
                0)  # (1, 1, 12, 512, 512)

        # 默认 concate 一个全0的mask作为prev mask
        self.prev_prediction = paddle.zeros_like(
            self.original_image[:, :1, :, :, :])

        if not self.with_prev_mask:
            self.prev_edge = paddle.zeros_like(self.original_image[:, :
                                                                   1, :, :, :])

    def get_prediction_noclicker(self, clicker, prev_mask=None):
        clicks_list = clicker.get_clicks()  # one click a time todo:累计多个点

        input_image = self.original_image  # [1, 1, 512, 512, 12]
        if prev_mask is None:
            if not self.with_prev_mask:
                prev_mask = self.prev_edge
            else:
                prev_mask = self.prev_prediction
        input_image = paddle.concat(
            [input_image, prev_mask], axis=1)  # [1, 2, 512, 512, 12]

        image_nd, clicks_lists, is_image_changed = self.apply_transforms(
            input_image, [clicks_list])
        pred_logits = self._get_prediction(image_nd, clicks_lists,
                                           is_image_changed)

        pred_logits = paddle.to_tensor(pred_logits)  # [1, 1, 512, 512, 12]
        for t in reversed(self.transforms):  # conv as the final output
            pred_logits = t.inv_transform(pred_logits)

        self.prev_prediction = pred_logits
        return pred_logits.numpy()[0, 0]

    def get_prediction(self, clicker, prev_mask=None):
        clicks_list = clicker.get_clicks()  #

        input_image = self.original_image
        if prev_mask is None:
            if not self.with_prev_mask:
                prev_mask = self.prev_edge
            else:
                prev_mask = self.prev_prediction

        input_image = paddle.concat([input_image, prev_mask], axis=1)

        image_nd, clicks_lists, is_image_changed = self.apply_transforms(
            input_image, [clicks_list])
        pred_logits = self._get_prediction(image_nd, clicks_lists,
                                           is_image_changed)

        pred_logits = paddle.to_tensor(pred_logits)

        prediction = F.interpolate(
            pred_logits,
            mode="trilinear",
            align_corners=True,
            size=image_nd.shape[2:],
            data_format="NCDHW")

        for t in reversed(self.transforms):
            if pred_edges is not None:
                edge_prediction = t.inv_transform(edge_prediction)
                self.prev_edge = edge_prediction
            prediction = t.inv_transform(prediction)

        self.prev_prediction = prediction
        return prediction.numpy()[0, 0]

    def prepare_input(self, image):
        prev_mask = image[:, 1:, :, :, :]
        image = image[:, :1, :, :, :]
        image = self.normalization(image)
        return image, prev_mask

    def get_coord_features(self, image, prev_mask, points):
        coord_features = self.dist_maps(image, points)  # [1, 2, 512, 512, 12]

        if prev_mask is not None:
            coord_features = paddle.concat(
                (prev_mask, coord_features), axis=1)  # [1, 3, 512, 512, 12]

        return coord_features

    def _get_prediction(
            self, image_nd, clicks_lists,
            is_image_changed):  # what is the click? click on the right place?
        input_names = self.predictor.get_input_names()
        self.input_handle_1 = self.predictor.get_input_handle(input_names[0])
        self.input_handle_2 = self.predictor.get_input_handle(input_names[1])
        points_nd = self.get_points_nd(clicks_lists)  # 一个正点,一个负点

        image, prev_mask = self.prepare_input(image_nd)

        coord_features = self.get_coord_features(image, prev_mask, points_nd)
        image = image.numpy().astype("float32")
        coord_features = coord_features.numpy().astype("float32")

        # logging.info("coord_features.shape, image.shape", coord_features.shape, image.shape, prev_mask.shape)
        self.input_handle_1.copy_from_cpu(image)
        self.input_handle_2.copy_from_cpu(coord_features)

        self.predictor.run()

        output_names = self.predictor.get_output_names()

        output_handle = self.predictor.get_output_handle(output_names[0])
        output_data = output_handle.copy_to_cpu()
        return output_data

    def _get_transform_states(self):
        return [x.get_state() for x in self.transforms]

    def _set_transform_states(self, states):
        assert len(states) == len(self.transforms)
        for state, transform in zip(states, self.transforms):
            transform.set_state(state)

    def apply_transforms(self, image_nd, clicks_lists):
        is_image_changed = False
        for t in self.transforms:
            image_nd, clicks_lists = t.transform(image_nd, clicks_lists)
            is_image_changed |= t.image_changed

        return image_nd, clicks_lists, is_image_changed

    def get_points_nd(self, clicks_lists):
        total_clicks = []
        logging.info(
            "check_list",
            clicks_lists, )
        num_pos_clicks = [
            sum(x.is_positive for x in clicks_list)
            for clicks_list in clicks_lists
        ]
        num_neg_clicks = [
            len(clicks_list) - num_pos
            for clicks_list, num_pos in zip(clicks_lists, num_pos_clicks)
        ]

        num_max_points = max(num_pos_clicks + num_neg_clicks)

        if self.net_clicks_limit is not None:
            num_max_points = min(self.net_clicks_limit, num_max_points)
        num_max_points = max(1, num_max_points)

        for clicks_list in clicks_lists:
            clicks_list = clicks_list[:self.net_clicks_limit]
            pos_clicks = [
                click.coords_and_indx for click in clicks_list
                if click.is_positive
            ]
            pos_clicks = pos_clicks + (num_max_points - len(pos_clicks)
                                       ) * [(-1, -1, -1, -1)]

            neg_clicks = [
                click.coords_and_indx for click in clicks_list
                if not click.is_positive
            ]
            neg_clicks = neg_clicks + (num_max_points - len(neg_clicks)
                                       ) * [(-1, -1, -1, -1)]
            total_clicks.append(pos_clicks + neg_clicks)

        return paddle.to_tensor(total_clicks)

    def get_states(self):
        return {
            "transform_states": self._get_transform_states(),
            "prev_prediction": self.prev_prediction,
        }

    def set_states(self, states):
        self._set_transform_states(states["transform_states"])
        self.prev_prediction = states["prev_prediction"]