import numpy as np import cv2 import migraphx def Preprocessing(pil_img, newW, newH): assert newW > 0 and newH > 0, 'Scale is too small' img_nd = cv2.cvtColor(pil_img, cv2.COLOR_BGR2RGB) # BGR转换为RGB img_nd = cv2.resize(img_nd, (newW, newH)) # 将图像尺寸修改为256x256 if len(img_nd.shape) == 2: img_nd = np.expand_dims(img_nd, axis=2) img_trans = img_nd.transpose((2, 0, 1)) # HWC转换为CHW img_trans = np.expand_dims(img_trans, 0) # CHW扩展为NCHW img_trans = np.ascontiguousarray(img_trans) # 保证内存连续存储 img_trans = img_trans.astype(np.float32) # 转换成浮点型数据 if img_trans.max() > 1: img = img_trans / 255.0 # 保证数据处于0-1之间的浮点数 return img def Sigmoid(x): return 1 / (1 + np.exp(-x)) if __name__ == '__main__': # 加载模型 model = migraphx.parse_onnx("../Resource/Models/unet_13_256.onnx") inputName = model.get_parameter_names() inputShape = model.get_parameter_shapes() print("inputName:{0} \ninputShape:{1}".format(inputName, inputShape)) # 编译模型 model.compile(migraphx.get_target("gpu"), device_id=0) # device_id: 设置GPU设备,默认为0号设备 # 图像预处理 img = cv2.imread("../Resource/Images/car1.jpeg") input_img = Preprocessing(img, 256, 256) # 模型推理 mask = model.run({'inputs':input_img}) output_mask = np.array(mask[0])[0] # 获取推理结果,shape为(1,256,256) probs = Sigmoid(output_mask) # 计算sigmoid值 # 0/1像素值,当大于0.996时,值为255,小于等于0.996时,值为0 output_mask[probs > 0.996] = 255 output_mask[probs <= 0.996] = 0 output = output_mask.astype(np.uint8)[0] # 将浮点型转换为uint8整型,shape为(256,256) cv2.imwrite("output.jpg", output) # 保存图像分割结果