import torch import torch.nn.functional as F from tqdm import tqdm from utils.dice_score import multiclass_dice_coeff, dice_coeff, multiclass_iou_coeff, iou_coeff @torch.inference_mode() def evaluate(net, dataloader, device, amp): net.eval() num_val_batches = len(dataloader) dice_score = 0 # iterate over the validation set with torch.autocast(device.type if device.type != 'mps' else 'cpu', enabled=amp): for batch in tqdm(dataloader, total=num_val_batches, desc='Validation round', unit='batch', leave=False): image, mask_true = batch['image'], batch['mask'] # move images and labels to correct device and type image = image.to(device=device, dtype=torch.float32, memory_format=torch.channels_last) mask_true = mask_true.to(device=device, dtype=torch.long) # predict the mask mask_pred = net(image) if net.n_classes == 1: assert mask_true.min() >= 0 and mask_true.max() <= 1, 'True mask indices should be in [0, 1]' mask_pred = (F.sigmoid(mask_pred) > 0.5).float() # compute the Dice score # dice_score += dice_coeff(mask_pred, mask_true, reduce_batch_first=False) dice_score += iou_coeff(mask_pred, mask_true, reduce_batch_first=False) else: assert mask_true.min() >= 0 and mask_true.max() < net.n_classes, 'True mask indices should be in [0, n_classes[' # convert to one-hot format mask_true = F.one_hot(mask_true, net.n_classes).permute(0, 3, 1, 2).float() mask_pred = F.one_hot(mask_pred.argmax(dim=1), net.n_classes).permute(0, 3, 1, 2).float() # compute the Dice score, ignoring background # dice_score += multiclass_dice_coeff(mask_pred[:, 1:], mask_true[:, 1:], reduce_batch_first=False) dice_score += multiclass_iou_coeff(mask_pred[:, 1:], mask_true[:, 1:], reduce_batch_first=False) net.train() return dice_score / max(num_val_batches, 1)