Commit 6834de08 authored by Rayyyyy's avatar Rayyyyy
Browse files

Add icon

parent ec4c0101
{
"configurations": [
{
"name": "windows-gcc-x64",
"includePath": [
"${workspaceFolder}/**"
],
"compilerPath": "gcc",
"cStandard": "${default}",
"cppStandard": "${default}",
"intelliSenseMode": "windows-gcc-x64",
"compilerArgs": [
""
]
}
],
"version": 4
}
\ No newline at end of file
{
"version": "0.2.0",
"configurations": [
{
"name": "C/C++ Runner: Debug Session",
"type": "cppdbg",
"request": "launch",
"args": [],
"stopAtEntry": false,
"externalConsole": true,
"cwd": "d:/jobs_2024/modelzoo-icon/tvm_tune_resnet50-v2",
"program": "d:/jobs_2024/modelzoo-icon/tvm_tune_resnet50-v2/build/Debug/outDebug",
"MIMode": "gdb",
"miDebuggerPath": "gdb",
"setupCommands": [
{
"description": "Enable pretty-printing for gdb",
"text": "-enable-pretty-printing",
"ignoreFailures": true
}
]
}
]
}
\ No newline at end of file
{
"C_Cpp_Runner.cCompilerPath": "gcc",
"C_Cpp_Runner.cppCompilerPath": "g++",
"C_Cpp_Runner.debuggerPath": "gdb",
"C_Cpp_Runner.cStandard": "",
"C_Cpp_Runner.cppStandard": "",
"C_Cpp_Runner.msvcBatchPath": "C:/Program Files/Microsoft Visual Studio/VR_NR/Community/VC/Auxiliary/Build/vcvarsall.bat",
"C_Cpp_Runner.useMsvc": false,
"C_Cpp_Runner.warnings": [
"-Wall",
"-Wextra",
"-Wpedantic",
"-Wshadow",
"-Wformat=2",
"-Wcast-align",
"-Wconversion",
"-Wsign-conversion",
"-Wnull-dereference"
],
"C_Cpp_Runner.msvcWarnings": [
"/W4",
"/permissive-",
"/w14242",
"/w14287",
"/w14296",
"/w14311",
"/w14826",
"/w44062",
"/w44242",
"/w14905",
"/w14906",
"/w14263",
"/w44265",
"/w14928"
],
"C_Cpp_Runner.enableWarnings": true,
"C_Cpp_Runner.warningsAsError": false,
"C_Cpp_Runner.compilerArgs": [],
"C_Cpp_Runner.linkerArgs": [],
"C_Cpp_Runner.includePaths": [],
"C_Cpp_Runner.includeSearch": [
"*",
"**/*"
],
"C_Cpp_Runner.excludeSearch": [
"**/build",
"**/build/**",
"**/.*",
"**/.*/**",
"**/.vscode",
"**/.vscode/**"
],
"C_Cpp_Runner.useAddressSanitizer": false,
"C_Cpp_Runner.useUndefinedSanitizer": false,
"C_Cpp_Runner.useLeakSanitizer": false,
"C_Cpp_Runner.showCompilationTime": false,
"C_Cpp_Runner.useLinkTimeOptimization": false,
"C_Cpp_Runner.msvcSecureNoWarnings": false
}
\ No newline at end of file
...@@ -2,10 +2,12 @@ ...@@ -2,10 +2,12 @@
## 论文 ## 论文
`Deep Residual Learning for Image Recognition` `Deep Residual Learning for Image Recognition`
- https://arxiv.org/abs/1512.03385 - https://arxiv.org/abs/1512.03385
## 模型结构 ## 模型结构
ResNet50网络中包含了49个卷积层、1个全连接层等 ResNet50网络中包含了49个卷积层、1个全连接层等
![image.png](./image.png) ![image.png](./image.png)
## 算法原理 ## 算法原理
ResNet50使用了多个具有残差连接的残差块来解决梯度消失或梯度爆炸问题,并使得网络可以向更深层发展。 ResNet50使用了多个具有残差连接的残差块来解决梯度消失或梯度爆炸问题,并使得网络可以向更深层发展。
...@@ -14,87 +16,71 @@ ResNet50使用了多个具有残差连接的残差块来解决梯度消失或梯 ...@@ -14,87 +16,71 @@ ResNet50使用了多个具有残差连接的残差块来解决梯度消失或梯
## 环境配置 ## 环境配置
### Docker(方法一) ### Docker(方法一)
拉取镜像:
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:tvm-0.11_fp32_cpp_dtk22.10_py38_centos-7.6-latest
```
创建并启动容器
``` ```
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:tvm-0.11_fp32_cpp_dtk22.10_py38_centos-7.6-latest
docker run --shm-size 16g --network=host --name=ResNet50_v2 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -it <Your Image ID> /bin/bash docker run --shm-size 16g --network=host --name=ResNet50_v2 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -it <Your Image ID> /bin/bash
# 激活dtk # 激活dtk
source /opt/dtk/env.sh source /opt/dtk/env.sh
``` ```
## 数据集 ## 数据集
python 推理及调优代码使用的图片数据为: python推理及调优代码使用的图片数据为:[kitten](./kitten.jpg)
```
"https://s3.amazonaws.com/model-server/inputs/kitten.jpg"
```
标签数据为:
```
"https://s3.amazonaws.com/onnx-model-zoo/synset.txt"
```
C++部署代码使用数据为:
```
"https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip"
coco128数据集的目录结构如下: 标签数据为:[synset.txt](./synset.txt)
├── images
│ ├── train2017
├── labels
│ ├── train2017
├── LICENSE
├── README.txt
C++部署代码使用数据为:[coco128](./coco128.zip)
coco128数据集的目录结构如下:
``` ```
## 推理 ├── images
模型文件下载地址: │ ├── train2017
``` ├── labels
"https://github.com/onnx/models/raw/main/vision/classification/resnet/model/resnet50-v2-7.onnx" │ ├── train2017
``` ├── LICENSE
下载模型文件后执行以下命令进行推理测试及调优测试: ├── README.txt
```
git clone http://developer.hpccube.com/codes/modelzoo/tvm_tune_resnet50-v2.git
cd tvm_tune_resnet50-v2
export HIP_VISIBLE_DEVICES=1 #此处为指定哪张加速卡进行推理的ID号
python tune_resnet50-v2.py #根据实际修改模型路径
``` ```
## 推理
下载模型文件[resnet50-v2-7.onnx](http://113.200.138.88:18080/aimodels/findsource-dependency/tvm_tune_resnet50-v2/-/blob/main/resnet50-v2-7.onnx),执行以下命令进行推理测试及调优测试:
```bash
git clone http://developer.hpccube.com/codes/modelzoo/tvm_tune_resnet50-v2.git
cd tvm_tune_resnet50-v2
export HIP_VISIBLE_DEVICES=1 #此处为指定哪张加速卡进行推理的ID号
python tune_resnet50-v2.py #根据实际修改模型路径
```
### 单卡部署推理测试 ### 单卡部署推理测试
下载配置好镜像之后,cd /tvm-0.11-dev0/apps/ 进入该路径下,将代码下载放到该路径下,cd tvm_tune_resnet50-v2/ 进入该路径后, 下载配置好镜像之后,执行以下命令:
执行以下命令: ```bash
# 进入该路径下
cd /tvm-0.11-dev0/apps/ # 将代码下载放到该路径下
# 进入
cd tvm_tune_resnet50-v2/
# 执行
mkdir -p lib
export HIP_VISIBLE_DEVICES=1 #此处为指定哪张加速卡进行推理的ID号
python prepare_test_libs.py #根据实际修改模型路径
sh run_example.sh
``` ```
mkdir -p lib
export HIP_VISIBLE_DEVICES=1 #此处为指定哪张加速卡进行推理的ID号
python prepare_test_libs.py #根据实际修改模型路径
sh run_example.sh
```
## result
## result
![kitten-1.jpg](./kitten-1.jpg) ![kitten-1.jpg](./kitten-1.jpg)
### 精度 ### 精度
``` | max_num | max_iter | max_num_index |
max_num:15.6692 | :------: | :------: | :------: |
max_iter:0x28cda14 | 15.6692 | 0x28cda14 | 345 |
max_num_index:345
```
## 应用场景
## 应用场景
### 算法类别 ### 算法类别
图像分类 图像分类
### 热点应用行业 ### 热点应用行业
制造,政府,医疗,科研 制造,政府,医疗,科研
## 源码仓库及问题反馈 ## 源码仓库及问题反馈
- https://developer.hpccube.com/codes/modelzoo/tvm_tune_resnet50-v2
https://developer.hpccube.com/codes/modelzoo/tvm_tune_resnet50-v2
### 参考资料 ### 参考资料
- https://tvm.apache.org/docs
https://tvm.apache.org/docs
File added
icon.png

64.6 KB

Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment