# Preparing UCF-101 ## Introduction ```BibTeX @article{Soomro2012UCF101AD, title={UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild}, author={K. Soomro and A. Zamir and M. Shah}, journal={ArXiv}, year={2012}, volume={abs/1212.0402} } ``` For basic dataset information, you can refer to the dataset [website](https://www.crcv.ucf.edu/research/data-sets/ucf101/). Before we start, please make sure that the directory is located at `$MMACTION2/tools/data/ucf101/`. ## Step 1. Prepare Annotations First of all, you can run the following script to prepare annotations. ```shell bash download_annotations.sh ``` ## Step 2. Prepare Videos Then, you can run the following script to prepare videos. ```shell bash download_videos.sh ``` For better decoding speed, you can resize the original videos into smaller sized, densely encoded version by: ``` python ../resize_videos.py ../../../data/ucf101/videos/ ../../../data/ucf101/videos_256p_dense_cache --dense --level 2 --ext avi ``` ## Step 3. Extract RGB and Flow This part is **optional** if you only want to use the video loader. Before extracting, please refer to [install.md](/docs/en/install.md) for installing [denseflow](https://github.com/open-mmlab/denseflow). If you have plenty of SSD space, then we recommend extracting frames there for better I/O performance. The extracted frames (RGB + Flow) will take up about 100GB. You can run the following script to soft link SSD. ```shell # execute these two line (Assume the SSD is mounted at "/mnt/SSD/") mkdir /mnt/SSD/ucf101_extracted/ ln -s /mnt/SSD/ucf101_extracted/ ../../../data/ucf101/rawframes ``` If you only want to play with RGB frames (since extracting optical flow can be time-consuming), consider running the following script to extract **RGB-only** frames using denseflow. ```shell bash extract_rgb_frames.sh ``` If you didn't install denseflow, you can still extract RGB frames using OpenCV by the following script, but it will keep the original size of the images. ```shell bash extract_rgb_frames_opencv.sh ``` If Optical Flow is also required, run the following script to extract flow using "tvl1" algorithm. ```shell bash extract_frames.sh ``` ## Step 4. Generate File List you can run the follow script to generate file list in the format of rawframes and videos. ```shell bash generate_videos_filelist.sh bash generate_rawframes_filelist.sh ``` ## Step 5. Check Directory Structure After the whole data process for UCF-101 preparation, you will get the rawframes (RGB + Flow), videos and annotation files for UCF-101. In the context of the whole project (for UCF-101 only), the folder structure will look like: ``` mmaction2 ├── mmaction ├── tools ├── configs ├── data │ ├── ucf101 │ │ ├── ucf101_{train,val}_split_{1,2,3}_rawframes.txt │ │ ├── ucf101_{train,val}_split_{1,2,3}_videos.txt │ │ ├── annotations │ │ ├── videos │ │ │ ├── ApplyEyeMakeup │ │ │ │ ├── v_ApplyEyeMakeup_g01_c01.avi │ │ │ ├── YoYo │ │ │ │ ├── v_YoYo_g25_c05.avi │ │ ├── rawframes │ │ │ ├── ApplyEyeMakeup │ │ │ │ ├── v_ApplyEyeMakeup_g01_c01 │ │ │ │ │ ├── img_00001.jpg │ │ │ │ │ ├── img_00002.jpg │ │ │ │ │ ├── ... │ │ │ │ │ ├── flow_x_00001.jpg │ │ │ │ │ ├── flow_x_00002.jpg │ │ │ │ │ ├── ... │ │ │ │ │ ├── flow_y_00001.jpg │ │ │ │ │ ├── flow_y_00002.jpg │ │ │ ├── ... │ │ │ ├── YoYo │ │ │ │ ├── v_YoYo_g01_c01 │ │ │ │ ├── ... │ │ │ │ ├── v_YoYo_g25_c05 ``` For training and evaluating on UCF-101, please refer to [getting_started.md](/docs/en/getting_started.md).