# Copyright (c) OpenMMLab. All rights reserved. import argparse import glob import os import os.path as osp import sys from multiprocessing import Pool import mmcv import numpy as np from scipy.io import wavfile try: import librosa import lws except ImportError: print('Please import librosa, lws first.') sys.path.append('..') SILENCE_THRESHOLD = 2 FMIN = 125 FMAX = 7600 FRAME_SHIFT_MS = None MIN_LEVEL_DB = -100 REF_LEVEL_DB = 20 RESCALING = True RESCALING_MAX = 0.999 ALLOW_CLIPPING_IN_NORMALIZATION = True LOG_SCALE_MIN = -32.23619130191664 NORM_AUDIO = True class AudioTools: """All methods related to audio feature extraction. Code Reference: `_, `_. Args: frame_rate (int): The frame rate per second of the video. Default: 30. sample_rate (int): The sample rate for audio sampling. Default: 16000. num_mels (int): Number of channels of the melspectrogram. Default: 80. fft_size (int): fft_size / sample_rate is window size. Default: 1280. hop_size (int): hop_size / sample_rate is step size. Default: 320. """ def __init__(self, frame_rate=30, sample_rate=16000, num_mels=80, fft_size=1280, hop_size=320, spectrogram_type='lws'): self.frame_rate = frame_rate self.sample_rate = sample_rate self.silence_threshold = SILENCE_THRESHOLD self.num_mels = num_mels self.fmin = FMIN self.fmax = FMAX self.fft_size = fft_size self.hop_size = hop_size self.frame_shift_ms = FRAME_SHIFT_MS self.min_level_db = MIN_LEVEL_DB self.ref_level_db = REF_LEVEL_DB self.rescaling = RESCALING self.rescaling_max = RESCALING_MAX self.allow_clipping_in_normalization = ALLOW_CLIPPING_IN_NORMALIZATION self.log_scale_min = LOG_SCALE_MIN self.norm_audio = NORM_AUDIO self.spectrogram_type = spectrogram_type assert spectrogram_type in ['lws', 'librosa'] def load_wav(self, path): """Load an audio file into numpy array.""" return librosa.core.load(path, sr=self.sample_rate)[0] @staticmethod def audio_normalize(samples, desired_rms=0.1, eps=1e-4): """RMS normalize the audio data.""" rms = np.maximum(eps, np.sqrt(np.mean(samples**2))) samples = samples * (desired_rms / rms) return samples def generate_spectrogram_magphase(self, audio, with_phase=False): """Separate a complex-valued spectrogram D into its magnitude (S) and phase (P) components, so that D = S * P. Args: audio (np.ndarray): The input audio signal. with_phase (bool): Determines whether to output the phase components. Default: False. Returns: np.ndarray: magnitude and phase component of the complex-valued spectrogram. """ spectro = librosa.core.stft( audio, hop_length=self.get_hop_size(), n_fft=self.fft_size, center=True) spectro_mag, spectro_phase = librosa.core.magphase(spectro) spectro_mag = np.expand_dims(spectro_mag, axis=0) if with_phase: spectro_phase = np.expand_dims(np.angle(spectro_phase), axis=0) return spectro_mag, spectro_phase return spectro_mag def save_wav(self, wav, path): """Save the wav to disk.""" # 32767 = (2 ^ 15 - 1) maximum of int16 wav *= 32767 / max(0.01, np.max(np.abs(wav))) wavfile.write(path, self.sample_rate, wav.astype(np.int16)) def trim(self, quantized): """Trim the audio wavfile.""" start, end = self.start_and_end_indices(quantized, self.silence_threshold) return quantized[start:end] def adjust_time_resolution(self, quantized, mel): """Adjust time resolution by repeating features. Args: quantized (np.ndarray): (T,) mel (np.ndarray): (N, D) Returns: tuple: Tuple of (T,) and (T, D) """ assert quantized.ndim == 1 assert mel.ndim == 2 upsample_factor = quantized.size // mel.shape[0] mel = np.repeat(mel, upsample_factor, axis=0) n_pad = quantized.size - mel.shape[0] if n_pad != 0: assert n_pad > 0 mel = np.pad( mel, [(0, n_pad), (0, 0)], mode='constant', constant_values=0) # trim start, end = self.start_and_end_indices(quantized, self.silence_threshold) return quantized[start:end], mel[start:end, :] @staticmethod def start_and_end_indices(quantized, silence_threshold=2): """Trim the audio file when reaches the silence threshold.""" for start in range(quantized.size): if abs(quantized[start] - 127) > silence_threshold: break for end in range(quantized.size - 1, 1, -1): if abs(quantized[end] - 127) > silence_threshold: break assert abs(quantized[start] - 127) > silence_threshold assert abs(quantized[end] - 127) > silence_threshold return start, end def melspectrogram(self, y): """Generate the melspectrogram.""" D = self._lws_processor().stft(y).T S = self._amp_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db if not self.allow_clipping_in_normalization: assert S.max() <= 0 and S.min() - self.min_level_db >= 0 return self._normalize(S) def get_hop_size(self): """Calculate the hop size.""" hop_size = self.hop_size if hop_size is None: assert self.frame_shift_ms is not None hop_size = int(self.frame_shift_ms / 1000 * self.sample_rate) return hop_size def _lws_processor(self): """Perform local weighted sum. Please refer to `_. """ return lws.lws(self.fft_size, self.get_hop_size(), mode='speech') @staticmethod def lws_num_frames(length, fsize, fshift): """Compute number of time frames of lws spectrogram. Please refer to `_. """ pad = (fsize - fshift) if length % fshift == 0: M = (length + pad * 2 - fsize) // fshift + 1 else: M = (length + pad * 2 - fsize) // fshift + 2 return M def lws_pad_lr(self, x, fsize, fshift): """Compute left and right padding lws internally uses. Please refer to `_. """ M = self.lws_num_frames(len(x), fsize, fshift) pad = (fsize - fshift) T = len(x) + 2 * pad r = (M - 1) * fshift + fsize - T return pad, pad + r def _linear_to_mel(self, spectrogram): """Warp linear scale spectrograms to the mel scale. Please refer to `_ """ global _mel_basis _mel_basis = self._build_mel_basis() return np.dot(_mel_basis, spectrogram) def _build_mel_basis(self): """Build mel filters. Please refer to `_ """ assert self.fmax <= self.sample_rate // 2 return librosa.filters.mel( self.sample_rate, self.fft_size, fmin=self.fmin, fmax=self.fmax, n_mels=self.num_mels) def _amp_to_db(self, x): min_level = np.exp(self.min_level_db / 20 * np.log(10)) return 20 * np.log10(np.maximum(min_level, x)) @staticmethod def _db_to_amp(x): return np.power(10.0, x * 0.05) def _normalize(self, S): return np.clip((S - self.min_level_db) / -self.min_level_db, 0, 1) def _denormalize(self, S): return (np.clip(S, 0, 1) * -self.min_level_db) + self.min_level_db def read_audio(self, audio_path): wav = self.load_wav(audio_path) if self.norm_audio: wav = self.audio_normalize(wav) else: wav = wav / np.abs(wav).max() return wav def audio_to_spectrogram(self, wav): if self.spectrogram_type == 'lws': spectrogram = self.melspectrogram(wav).astype(np.float32).T elif self.spectrogram_type == 'librosa': spectrogram = self.generate_spectrogram_magphase(wav) return spectrogram def extract_audio_feature(wav_path, audio_tools, mel_out_dir): file_name, _ = osp.splitext(osp.basename(wav_path)) # Write the spectrograms to disk: mel_filename = os.path.join(mel_out_dir, file_name + '.npy') if not os.path.exists(mel_filename): try: wav = audio_tools.read_audio(wav_path) spectrogram = audio_tools.audio_to_spectrogram(wav) np.save( mel_filename, spectrogram.astype(np.float32), allow_pickle=False) except BaseException: print(f'Read audio [{wav_path}] failed.') if __name__ == '__main__': audio_tools = AudioTools( fft_size=512, hop_size=256) # window_size:32ms hop_size:16ms parser = argparse.ArgumentParser() parser.add_argument('audio_home_path', type=str) parser.add_argument('spectrogram_save_path', type=str) parser.add_argument('--level', type=int, default=1) parser.add_argument('--ext', default='m4a') parser.add_argument('--num-workers', type=int, default=4) parser.add_argument('--part', type=str, default='1/1') args = parser.parse_args() mmcv.mkdir_or_exist(args.spectrogram_save_path) files = glob.glob( # osp.join(args.audio_home_path, '*/' * args.level, '*' + args.ext) args.audio_home_path + '/*' * args.level + '.' + args.ext) print(f'found {len(files)} files.') files = sorted(files) if args.part is not None: [this_part, num_parts] = [int(i) for i in args.part.split('/')] part_len = len(files) // num_parts p = Pool(args.num_workers) for file in files[part_len * (this_part - 1):( part_len * this_part) if this_part != num_parts else len(files)]: p.apply_async( extract_audio_feature, args=(file, audio_tools, args.spectrogram_save_path)) p.close() p.join()