# Copyright (c) OpenMMLab. All rights reserved. import argparse from mmcv import load from scipy.special import softmax from mmaction.core.evaluation import (get_weighted_score, mean_class_accuracy, top_k_accuracy) def parse_args(): parser = argparse.ArgumentParser(description='Fusing multiple scores') parser.add_argument( '--scores', nargs='+', help='list of scores', default=['demo/fuse/rgb.pkl', 'demo/fuse/flow.pkl']) parser.add_argument( '--coefficients', nargs='+', type=float, help='coefficients of each score file', default=[1.0, 1.0]) parser.add_argument( '--datalist', help='list of testing data', default='demo/fuse/data_list.txt') parser.add_argument('--apply-softmax', action='store_true') args = parser.parse_args() return args def main(): args = parse_args() assert len(args.scores) == len(args.coefficients) score_list = args.scores score_list = [load(f) for f in score_list] if args.apply_softmax: def apply_softmax(scores): return [softmax(score) for score in scores] score_list = [apply_softmax(scores) for scores in score_list] weighted_scores = get_weighted_score(score_list, args.coefficients) data = open(args.datalist).readlines() labels = [int(x.strip().split()[-1]) for x in data] mean_class_acc = mean_class_accuracy(weighted_scores, labels) top_1_acc, top_5_acc = top_k_accuracy(weighted_scores, labels, (1, 5)) print(f'Mean Class Accuracy: {mean_class_acc:.04f}') print(f'Top 1 Accuracy: {top_1_acc:.04f}') print(f'Top 5 Accuracy: {top_5_acc:.04f}') if __name__ == '__main__': main()