# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import shutil import tempfile import unittest.mock as mock import warnings from collections import OrderedDict from unittest.mock import MagicMock, patch import pytest import torch import torch.nn as nn from mmcv.runner import EpochBasedRunner, IterBasedRunner from mmcv.utils import get_logger from torch.utils.data import DataLoader, Dataset # TODO import eval hooks from mmcv and delete them from mmaction2 try: from mmcv.runner import DistEvalHook, EvalHook pytest.skip( 'EvalHook and DistEvalHook are supported in MMCV', allow_module_level=True) except ImportError: warnings.warn('DeprecationWarning: EvalHook and DistEvalHook from ' 'mmaction2 will be deprecated. Please install mmcv through ' 'master branch.') from mmaction.core import DistEvalHook, EvalHook class ExampleDataset(Dataset): def __init__(self): self.index = 0 self.eval_result = [1, 4, 3, 7, 2, -3, 4, 6] def __getitem__(self, idx): results = dict(x=torch.tensor([1])) return results def __len__(self): return 1 @mock.create_autospec def evaluate(self, results, logger=None): pass class EvalDataset(ExampleDataset): def evaluate(self, results, logger=None): acc = self.eval_result[self.index] output = OrderedDict(acc=acc, index=self.index, score=acc) self.index += 1 return output class Model(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(2, 1) @staticmethod def forward(x, **kwargs): return x @staticmethod def train_step(data_batch, optimizer, **kwargs): if not isinstance(data_batch, dict): data_batch = dict(x=data_batch) return data_batch def val_step(self, x, optimizer, **kwargs): return dict(loss=self(x)) def _build_epoch_runner(): model = Model() tmp_dir = tempfile.mkdtemp() runner = EpochBasedRunner( model=model, work_dir=tmp_dir, logger=get_logger('demo')) return runner def _build_iter_runner(): model = Model() tmp_dir = tempfile.mkdtemp() runner = IterBasedRunner( model=model, work_dir=tmp_dir, logger=get_logger('demo')) return runner def test_eval_hook(): with pytest.raises(AssertionError): # `save_best` should be a str test_dataset = Model() data_loader = DataLoader(test_dataset) EvalHook(data_loader, save_best=True) with pytest.raises(TypeError): # dataloader must be a pytorch DataLoader test_dataset = Model() data_loader = [DataLoader(test_dataset)] EvalHook(data_loader) with pytest.raises(ValueError): # save_best must be valid when rule_map is None test_dataset = ExampleDataset() data_loader = DataLoader(test_dataset) EvalHook(data_loader, save_best='unsupport') with pytest.raises(KeyError): # rule must be in keys of rule_map test_dataset = Model() data_loader = DataLoader(test_dataset) EvalHook(data_loader, save_best='auto', rule='unsupport') test_dataset = ExampleDataset() loader = DataLoader(test_dataset) model = Model() data_loader = DataLoader(test_dataset) eval_hook = EvalHook(data_loader, save_best=None) with tempfile.TemporaryDirectory() as tmpdir: # total_epochs = 1 logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 1) test_dataset.evaluate.assert_called_with( test_dataset, [torch.tensor([1])], logger=runner.logger) assert runner.meta is None or 'best_score' not in runner.meta[ 'hook_msgs'] assert runner.meta is None or 'best_ckpt' not in runner.meta[ 'hook_msgs'] # when `save_best` is set to 'auto', first metric will be used. loader = DataLoader(EvalDataset()) model = Model() data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook(data_loader, interval=1, save_best='auto') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth') assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path) assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == 7 # total_epochs = 8, return the best acc and corresponding epoch loader = DataLoader(EvalDataset()) model = Model() data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook(data_loader, interval=1, save_best='acc') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth') assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path) assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == 7 # total_epochs = 8, return the best score and corresponding epoch data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook( data_loader, interval=1, save_best='score', rule='greater') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_score_epoch_4.pth') assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path) assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == 7 # total_epochs = 8, return the best score using less compare func # and indicate corresponding epoch data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook(data_loader, save_best='acc', rule='less') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_acc_epoch_6.pth') assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path) assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == -3 # Test the EvalHook when resume happened data_loader = DataLoader(EvalDataset()) eval_hook = EvalHook(data_loader, save_best='acc') with tempfile.TemporaryDirectory() as tmpdir: logger = get_logger('test_eval') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.run([loader], [('train', 1)], 2) ckpt_path = osp.join(tmpdir, 'best_acc_epoch_2.pth') assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path) assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == 4 resume_from = osp.join(tmpdir, 'latest.pth') loader = DataLoader(ExampleDataset()) eval_hook = EvalHook(data_loader, save_best='acc') runner = EpochBasedRunner(model=model, work_dir=tmpdir, logger=logger) runner.register_checkpoint_hook(dict(interval=1)) runner.register_hook(eval_hook) runner.resume(resume_from) runner.run([loader], [('train', 1)], 8) ckpt_path = osp.join(tmpdir, 'best_acc_epoch_4.pth') assert runner.meta['hook_msgs']['best_ckpt'] == osp.realpath(ckpt_path) assert osp.exists(ckpt_path) assert runner.meta['hook_msgs']['best_score'] == 7 @patch('mmaction.apis.single_gpu_test', MagicMock) @patch('mmaction.apis.multi_gpu_test', MagicMock) @pytest.mark.parametrize('EvalHookParam', [EvalHook, DistEvalHook]) @pytest.mark.parametrize('_build_demo_runner,by_epoch', [(_build_epoch_runner, True), (_build_iter_runner, False)]) def test_start_param(EvalHookParam, _build_demo_runner, by_epoch): # create dummy data dataloader = DataLoader(torch.ones((5, 2))) # 0.1. dataloader is not a DataLoader object with pytest.raises(TypeError): EvalHookParam(dataloader=MagicMock(), interval=-1) # 0.2. negative interval with pytest.raises(ValueError): EvalHookParam(dataloader, interval=-1) # 1. start=None, interval=1: perform evaluation after each epoch. runner = _build_demo_runner() evalhook = EvalHookParam( dataloader, interval=1, by_epoch=by_epoch, save_best=None) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) runner.run([dataloader], [('train', 1)], 2) assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2 # 2. start=1, interval=1: perform evaluation after each epoch. runner = _build_demo_runner() evalhook = EvalHookParam( dataloader, start=1, interval=1, by_epoch=by_epoch, save_best=None) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) runner.run([dataloader], [('train', 1)], 2) assert evalhook.evaluate.call_count == 2 # after epoch 1 & 2 # 3. start=None, interval=2: perform evaluation after epoch 2, 4, 6, etc runner = _build_demo_runner() evalhook = EvalHookParam( dataloader, interval=2, by_epoch=by_epoch, save_best=None) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) runner.run([dataloader], [('train', 1)], 2) assert evalhook.evaluate.call_count == 1 # after epoch 2 # 4. start=1, interval=2: perform evaluation after epoch 1, 3, 5, etc runner = _build_demo_runner() evalhook = EvalHookParam( dataloader, start=1, interval=2, by_epoch=by_epoch, save_best=None) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) runner.run([dataloader], [('train', 1)], 3) assert evalhook.evaluate.call_count == 2 # after epoch 1 & 3 # 5. start=0/negative, interval=1: perform evaluation after each epoch and # before epoch 1. runner = _build_demo_runner() evalhook = EvalHookParam( dataloader, start=0, by_epoch=by_epoch, save_best=None) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) runner.run([dataloader], [('train', 1)], 2) assert evalhook.evaluate.call_count == 3 # before epoch1 and after e1 & e2 runner = _build_demo_runner() with pytest.warns(UserWarning): evalhook = EvalHookParam( dataloader, start=-2, by_epoch=by_epoch, save_best=None) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) runner.run([dataloader], [('train', 1)], 2) assert evalhook.evaluate.call_count == 3 # before epoch1 and after e1 & e2 # 6. resuming from epoch i, start = x (x<=i), interval =1: perform # evaluation after each epoch and before the first epoch. runner = _build_demo_runner() evalhook = EvalHookParam( dataloader, start=1, by_epoch=by_epoch, save_best=None) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) if by_epoch: runner._epoch = 2 else: runner._iter = 2 runner.run([dataloader], [('train', 1)], 3) assert evalhook.evaluate.call_count == 2 # before & after epoch 3 # 7. resuming from epoch i, start = i+1/None, interval =1: perform # evaluation after each epoch. runner = _build_demo_runner() evalhook = EvalHookParam( dataloader, start=2, by_epoch=by_epoch, save_best=None) evalhook.evaluate = MagicMock() runner.register_hook(evalhook) if by_epoch: runner._epoch = 1 else: runner._iter = 1 runner.run([dataloader], [('train', 1)], 3) assert evalhook.evaluate.call_count == 2 # after epoch 2 & 3 shutil.rmtree(runner.work_dir)