#!/usr/bin/env bash export HIP_VISIBLE_DEVICES=0,1,2,3 PID_FILE=$2 echo $$ > $PID_FILE CUR_DIR="$( cd "$(dirname "$0")" ; pwd )" cd $CUR_DIR # Dataset prepare start=$(date +%s) start_str=`date '+%Y-%m-%d %H:%M:%S' -d "@$start"` echo "$start_str Begin dataset prepare" if [ ! -d "data" ]; then mkdir data fi cd $CUR_DIR/data ln -s /jiutiandata/7.4/ sthv2 cd $CUR_DIR/data/sthv2 cat 20bn-something-something-v2-?? | tar zx mv 20bn-something-something-v2 videos cd $CUR_DIR/tools/data/sthv2 bash extract_rgb_frames_opencv.sh bash generate_rawframes_filelist.sh end=$(date +%s) end_str=`date '+%Y-%m-%d %H:%M:%S' -d "@$end"` echo "$end_str Finish dataset prepare" data_prepare_time=$(($end-$start)) echo "Dataset prepare time: ${data_prepare_time}s" # running training cd $CUR_DIR ./tools/dist_train.sh configs/recognition/tsm/tsm_r50_1x1x8_50e_sthv2_rgb.py 4 --validate --seed 0 --cfg-options model.backbone.pretrained=/jiutiandata/7.4/resnet50_8xb32_in1k_20210831-ea4938fc.pth optimizer.lr=0.005 data.videos_per_gpu=8 data.val_dataloader.videos_per_gpu=16 data.test_dataloader.videos_per_gpu=3 data.workers_per_gpu=4 evaluation.interval=1 $1 $2