# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel dp_factory = {'cuda': MMDataParallel, 'cpu': MMDataParallel} ddp_factory = {'cuda': MMDistributedDataParallel} def build_dp(model, device='cuda', default_args=None): """build DataParallel module by device type. if device is cuda, return a MMDataParallel model; if device is mlu, return a MLUDataParallel model. Args: model(nn.Module): model to be parallelized. device(str): device type, cuda, cpu or mlu. Defaults to cuda. default_args: dict type, include the following parameters. device_ids(int): device ids of modules to be scattered to. Defaults to None when GPU or MLU is not available. Returns: model(nn.Module): the model to be parallelized. """ if device == 'cuda': model = model.cuda() elif device == 'mlu': from mmcv.device.mlu import MLUDataParallel dp_factory['mlu'] = MLUDataParallel model = model.mlu() return dp_factory[device](model, **default_args) def build_ddp(model, device='cuda', default_args=None): """Build DistributedDataParallel module by device type. If device is cuda, return a MMDistributedDataParallel model; if device is mlu, return a MLUDistributedDataParallel model. Args: model(:class:`nn.Moudle`): module to be parallelized. device(str): device type, mlu or cuda. default_args: dict type, include the following parameters. device_ids(int): which represents the only device where the input module corresponding to this process resides. Defaults to None. broadcast_buffers(bool): Flag that enables syncing (broadcasting) buffers of the module at beginning of the forward function. Defaults to True. find_unused_parameters(bool): Traverse the autograd graph of all tensors contained in the return value of the wrapped module's ``forward`` function. Parameters that don't receive gradients as part of this graph are preemptively marked as being ready to be reduced. Note that all ``forward`` outputs that are derived from module parameters must participate in calculating loss and later the gradient computation. If they don't, this wrapper will hang waiting for autograd to produce gradients for those parameters. Any outputs derived from module parameters that are otherwise unused can be detached from the autograd graph using ``torch.Tensor.detach``. Defaults to False. Returns: model(nn.Module): the module to be parallelized References: .. [1] https://pytorch.org/docs/stable/generated/torch.nn.parallel. DistributedDataParallel.html """ assert device in ['cuda', 'mlu' ], 'Only available for cuda or mlu devices currently.' if device == 'cuda': model = model.cuda() elif device == 'mlu': from mmcv.device.mlu import MLUDistributedDataParallel ddp_factory['mlu'] = MLUDistributedDataParallel model = model.mlu() return ddp_factory[device](model, **default_args) def is_mlu_available(): """Returns a bool indicating if MLU is currently available.""" return hasattr(torch, 'is_mlu_available') and torch.is_mlu_available() def get_device(): """Returns an available device, cpu, cuda or mlu.""" is_device_available = { 'cuda': torch.cuda.is_available(), 'mlu': is_mlu_available() } device_list = [k for k, v in is_device_available.items() if v] return device_list[0] if len(device_list) == 1 else 'cpu' default_device = get_device()