# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import normal_init from ..builder import HEADS from .base import BaseHead @HEADS.register_module() class X3DHead(BaseHead): """Classification head for I3D. Args: num_classes (int): Number of classes to be classified. in_channels (int): Number of channels in input feature. loss_cls (dict): Config for building loss. Default: dict(type='CrossEntropyLoss') spatial_type (str): Pooling type in spatial dimension. Default: 'avg'. dropout_ratio (float): Probability of dropout layer. Default: 0.5. init_std (float): Std value for Initiation. Default: 0.01. fc1_bias (bool): If the first fc layer has bias. Default: False. """ def __init__(self, num_classes, in_channels, loss_cls=dict(type='CrossEntropyLoss'), spatial_type='avg', dropout_ratio=0.5, init_std=0.01, fc1_bias=False): super().__init__(num_classes, in_channels, loss_cls) self.spatial_type = spatial_type self.dropout_ratio = dropout_ratio self.init_std = init_std if self.dropout_ratio != 0: self.dropout = nn.Dropout(p=self.dropout_ratio) else: self.dropout = None self.in_channels = in_channels self.mid_channels = 2048 self.num_classes = num_classes self.fc1_bias = fc1_bias self.fc1 = nn.Linear( self.in_channels, self.mid_channels, bias=self.fc1_bias) self.fc2 = nn.Linear(self.mid_channels, self.num_classes) self.relu = nn.ReLU() self.pool = None if self.spatial_type == 'avg': self.pool = nn.AdaptiveAvgPool3d((1, 1, 1)) elif self.spatial_type == 'max': self.pool = nn.AdaptiveMaxPool3d((1, 1, 1)) else: raise NotImplementedError def init_weights(self): """Initiate the parameters from scratch.""" normal_init(self.fc1, std=self.init_std) normal_init(self.fc2, std=self.init_std) def forward(self, x): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The classification scores for input samples. """ # [N, in_channels, T, H, W] assert self.pool is not None x = self.pool(x) # [N, in_channels, 1, 1, 1] # [N, in_channels, 1, 1, 1] x = x.view(x.shape[0], -1) # [N, in_channels] x = self.fc1(x) # [N, 2048] x = self.relu(x) if self.dropout is not None: x = self.dropout(x) cls_score = self.fc2(x) # [N, num_classes] return cls_score