# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import normal_init from ..builder import HEADS from .base import AvgConsensus, BaseHead @HEADS.register_module() class TSNHead(BaseHead): """Class head for TSN. Args: num_classes (int): Number of classes to be classified. in_channels (int): Number of channels in input feature. loss_cls (dict): Config for building loss. Default: dict(type='CrossEntropyLoss'). spatial_type (str): Pooling type in spatial dimension. Default: 'avg'. consensus (dict): Consensus config dict. dropout_ratio (float): Probability of dropout layer. Default: 0.4. init_std (float): Std value for Initiation. Default: 0.01. kwargs (dict, optional): Any keyword argument to be used to initialize the head. """ def __init__(self, num_classes, in_channels, loss_cls=dict(type='CrossEntropyLoss'), spatial_type='avg', consensus=dict(type='AvgConsensus', dim=1), dropout_ratio=0.4, init_std=0.01, **kwargs): super().__init__(num_classes, in_channels, loss_cls=loss_cls, **kwargs) self.spatial_type = spatial_type self.dropout_ratio = dropout_ratio self.init_std = init_std consensus_ = consensus.copy() consensus_type = consensus_.pop('type') if consensus_type == 'AvgConsensus': self.consensus = AvgConsensus(**consensus_) else: self.consensus = None if self.spatial_type == 'avg': # use `nn.AdaptiveAvgPool2d` to adaptively match the in_channels. self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) else: self.avg_pool = None if self.dropout_ratio != 0: self.dropout = nn.Dropout(p=self.dropout_ratio) else: self.dropout = None self.fc_cls = nn.Linear(self.in_channels, self.num_classes) def init_weights(self): """Initiate the parameters from scratch.""" normal_init(self.fc_cls, std=self.init_std) def forward(self, x, num_segs): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. num_segs (int): Number of segments into which a video is divided. Returns: torch.Tensor: The classification scores for input samples. """ # [N * num_segs, in_channels, 7, 7] if self.avg_pool is not None: if isinstance(x, tuple): shapes = [y.shape for y in x] assert 1 == 0, f'x is tuple {shapes}' x = self.avg_pool(x) # [N * num_segs, in_channels, 1, 1] x = x.reshape((-1, num_segs) + x.shape[1:]) # [N, num_segs, in_channels, 1, 1] x = self.consensus(x) # [N, 1, in_channels, 1, 1] x = x.squeeze(1) # [N, in_channels, 1, 1] if self.dropout is not None: x = self.dropout(x) # [N, in_channels, 1, 1] x = x.view(x.size(0), -1) # [N, in_channels] cls_score = self.fc_cls(x) # [N, num_classes] return cls_score