# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import normal_init from ..builder import HEADS from .base import BaseHead @HEADS.register_module() class STGCNHead(BaseHead): """The classification head for STGCN. Args: num_classes (int): Number of classes to be classified. in_channels (int): Number of channels in input feature. loss_cls (dict): Config for building loss. Default: dict(type='CrossEntropyLoss') spatial_type (str): Pooling type in spatial dimension. Default: 'avg'. num_person (int): Number of person. Default: 2. init_std (float): Std value for Initiation. Default: 0.01. kwargs (dict, optional): Any keyword argument to be used to initialize the head. """ def __init__(self, num_classes, in_channels, loss_cls=dict(type='CrossEntropyLoss'), spatial_type='avg', num_person=2, init_std=0.01, **kwargs): super().__init__(num_classes, in_channels, loss_cls, **kwargs) self.spatial_type = spatial_type self.in_channels = in_channels self.num_classes = num_classes self.num_person = num_person self.init_std = init_std self.pool = None if self.spatial_type == 'avg': self.pool = nn.AdaptiveAvgPool2d((1, 1)) elif self.spatial_type == 'max': self.pool = nn.AdaptiveMaxPool2d((1, 1)) else: raise NotImplementedError self.fc = nn.Conv2d(self.in_channels, self.num_classes, kernel_size=1) def init_weights(self): normal_init(self.fc, std=self.init_std) def forward(self, x): # global pooling assert self.pool is not None x = self.pool(x) x = x.view(x.shape[0] // self.num_person, self.num_person, -1, 1, 1).mean(dim=1) # prediction x = self.fc(x) x = x.view(x.shape[0], -1) return x