# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmcv.cnn import normal_init from ..builder import HEADS from .base import BaseHead @HEADS.register_module() class SlowFastHead(BaseHead): """The classification head for SlowFast. Args: num_classes (int): Number of classes to be classified. in_channels (int): Number of channels in input feature. loss_cls (dict): Config for building loss. Default: dict(type='CrossEntropyLoss'). spatial_type (str): Pooling type in spatial dimension. Default: 'avg'. dropout_ratio (float): Probability of dropout layer. Default: 0.8. init_std (float): Std value for Initiation. Default: 0.01. kwargs (dict, optional): Any keyword argument to be used to initialize the head. """ def __init__(self, num_classes, in_channels, loss_cls=dict(type='CrossEntropyLoss'), spatial_type='avg', dropout_ratio=0.8, init_std=0.01, **kwargs): super().__init__(num_classes, in_channels, loss_cls, **kwargs) self.spatial_type = spatial_type self.dropout_ratio = dropout_ratio self.init_std = init_std if self.dropout_ratio != 0: self.dropout = nn.Dropout(p=self.dropout_ratio) else: self.dropout = None self.fc_cls = nn.Linear(in_channels, num_classes) if self.spatial_type == 'avg': self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1)) else: self.avg_pool = None def init_weights(self): """Initiate the parameters from scratch.""" normal_init(self.fc_cls, std=self.init_std) def forward(self, x): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The classification scores for input samples. """ # ([N, channel_fast, T, H, W], [(N, channel_slow, T, H, W)]) x_fast, x_slow = x # ([N, channel_fast, 1, 1, 1], [N, channel_slow, 1, 1, 1]) x_fast = self.avg_pool(x_fast) x_slow = self.avg_pool(x_slow) # [N, channel_fast + channel_slow, 1, 1, 1] x = torch.cat((x_slow, x_fast), dim=1) if self.dropout is not None: x = self.dropout(x) # [N x C] x = x.view(x.size(0), -1) # [N x num_classes] cls_score = self.fc_cls(x) return cls_score