# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from mmcv.cnn import CONV_LAYERS, build_norm_layer, constant_init, kaiming_init from torch.nn.modules.utils import _triple @CONV_LAYERS.register_module() class Conv2plus1d(nn.Module): """(2+1)d Conv module for R(2+1)d backbone. https://arxiv.org/pdf/1711.11248.pdf. Args: in_channels (int): Same as nn.Conv3d. out_channels (int): Same as nn.Conv3d. kernel_size (int | tuple[int]): Same as nn.Conv3d. stride (int | tuple[int]): Same as nn.Conv3d. padding (int | tuple[int]): Same as nn.Conv3d. dilation (int | tuple[int]): Same as nn.Conv3d. groups (int): Same as nn.Conv3d. bias (bool | str): If specified as `auto`, it will be decided by the norm_cfg. Bias will be set as True if norm_cfg is None, otherwise False. """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, norm_cfg=dict(type='BN3d')): super().__init__() kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) assert len(kernel_size) == len(stride) == len(padding) == 3 self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.bias = bias self.norm_cfg = norm_cfg self.output_padding = (0, 0, 0) self.transposed = False # The middle-plane is calculated according to: # M_i = \floor{\frac{t * d^2 N_i-1 * N_i} # {d^2 * N_i-1 + t * N_i}} # where d, t are spatial and temporal kernel, and # N_i, N_i-1 are planes # and inplanes. https://arxiv.org/pdf/1711.11248.pdf mid_channels = 3 * ( in_channels * out_channels * kernel_size[1] * kernel_size[2]) mid_channels /= ( in_channels * kernel_size[1] * kernel_size[2] + 3 * out_channels) mid_channels = int(mid_channels) self.conv_s = nn.Conv3d( in_channels, mid_channels, kernel_size=(1, kernel_size[1], kernel_size[2]), stride=(1, stride[1], stride[2]), padding=(0, padding[1], padding[2]), bias=bias) _, self.bn_s = build_norm_layer(self.norm_cfg, mid_channels) self.relu = nn.ReLU(inplace=True) self.conv_t = nn.Conv3d( mid_channels, out_channels, kernel_size=(kernel_size[0], 1, 1), stride=(stride[0], 1, 1), padding=(padding[0], 0, 0), bias=bias) self.init_weights() def forward(self, x): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. Returns: torch.Tensor: The output of the module. """ x = self.conv_s(x) x = self.bn_s(x) x = self.relu(x) x = self.conv_t(x) return x def init_weights(self): """Initiate the parameters from scratch.""" kaiming_init(self.conv_s) kaiming_init(self.conv_t) constant_init(self.bn_s, 1, bias=0)