# Copyright (c) OpenMMLab. All rights reserved. import random import warnings from collections.abc import Sequence import cv2 import mmcv import numpy as np from mmcv.utils import digit_version from torch.nn.modules.utils import _pair from ..builder import PIPELINES from .formatting import to_tensor def _combine_quadruple(a, b): return (a[0] + a[2] * b[0], a[1] + a[3] * b[1], a[2] * b[2], a[3] * b[3]) def _flip_quadruple(a): return (1 - a[0] - a[2], a[1], a[2], a[3]) def _init_lazy_if_proper(results, lazy): """Initialize lazy operation properly. Make sure that a lazy operation is properly initialized, and avoid a non-lazy operation accidentally getting mixed in. Required keys in results are "imgs" if "img_shape" not in results, otherwise, Required keys in results are "img_shape", add or modified keys are "img_shape", "lazy". Add or modified keys in "lazy" are "original_shape", "crop_bbox", "flip", "flip_direction", "interpolation". Args: results (dict): A dict stores data pipeline result. lazy (bool): Determine whether to apply lazy operation. Default: False. """ if 'img_shape' not in results: results['img_shape'] = results['imgs'][0].shape[:2] if lazy: if 'lazy' not in results: img_h, img_w = results['img_shape'] lazyop = dict() lazyop['original_shape'] = results['img_shape'] lazyop['crop_bbox'] = np.array([0, 0, img_w, img_h], dtype=np.float32) lazyop['flip'] = False lazyop['flip_direction'] = None lazyop['interpolation'] = None results['lazy'] = lazyop else: assert 'lazy' not in results, 'Use Fuse after lazy operations' @PIPELINES.register_module() class TorchvisionTrans: """Torchvision Augmentations, under torchvision.transforms. Args: type (str): The name of the torchvision transformation. """ def __init__(self, type, **kwargs): try: import torchvision import torchvision.transforms as tv_trans except ImportError: raise RuntimeError('Install torchvision to use TorchvisionTrans') if digit_version(torchvision.__version__) < digit_version('0.8.0'): raise RuntimeError('The version of torchvision should be at least ' '0.8.0') trans = getattr(tv_trans, type, None) assert trans, f'Transform {type} not in torchvision' self.trans = trans(**kwargs) def __call__(self, results): assert 'imgs' in results imgs = [x.transpose(2, 0, 1) for x in results['imgs']] imgs = to_tensor(np.stack(imgs)) imgs = self.trans(imgs).data.numpy() imgs[imgs > 255] = 255 imgs[imgs < 0] = 0 imgs = imgs.astype(np.uint8) imgs = [x.transpose(1, 2, 0) for x in imgs] results['imgs'] = imgs return results @PIPELINES.register_module() class PytorchVideoTrans: """PytorchVideoTrans Augmentations, under pytorchvideo.transforms. Args: type (str): The name of the pytorchvideo transformation. """ def __init__(self, type, **kwargs): try: import pytorchvideo.transforms as ptv_trans import torch except ImportError: raise RuntimeError('Install pytorchvideo to use PytorchVideoTrans') if digit_version(torch.__version__) < digit_version('1.8.0'): raise RuntimeError( 'The version of PyTorch should be at least 1.8.0') trans = getattr(ptv_trans, type, None) assert trans, f'Transform {type} not in pytorchvideo' supported_pytorchvideo_trans = ('AugMix', 'RandAugment', 'RandomResizedCrop', 'ShortSideScale', 'RandomShortSideScale') assert type in supported_pytorchvideo_trans,\ f'PytorchVideo Transform {type} is not supported in MMAction2' self.trans = trans(**kwargs) self.type = type def __call__(self, results): assert 'imgs' in results assert 'gt_bboxes' not in results,\ f'PytorchVideo {self.type} doesn\'t support bboxes yet.' assert 'proposals' not in results,\ f'PytorchVideo {self.type} doesn\'t support bboxes yet.' if self.type in ('AugMix', 'RandAugment'): # list[ndarray(h, w, 3)] -> torch.tensor(t, c, h, w) imgs = [x.transpose(2, 0, 1) for x in results['imgs']] imgs = to_tensor(np.stack(imgs)) else: # list[ndarray(h, w, 3)] -> torch.tensor(c, t, h, w) # uint8 -> float32 imgs = to_tensor((np.stack(results['imgs']).transpose(3, 0, 1, 2) / 255.).astype(np.float32)) imgs = self.trans(imgs).data.numpy() if self.type in ('AugMix', 'RandAugment'): imgs[imgs > 255] = 255 imgs[imgs < 0] = 0 imgs = imgs.astype(np.uint8) # torch.tensor(t, c, h, w) -> list[ndarray(h, w, 3)] imgs = [x.transpose(1, 2, 0) for x in imgs] else: # float32 -> uint8 imgs = imgs * 255 imgs[imgs > 255] = 255 imgs[imgs < 0] = 0 imgs = imgs.astype(np.uint8) # torch.tensor(c, t, h, w) -> list[ndarray(h, w, 3)] imgs = [x for x in imgs.transpose(1, 2, 3, 0)] results['imgs'] = imgs return results @PIPELINES.register_module() class PoseCompact: """Convert the coordinates of keypoints to make it more compact. Specifically, it first find a tight bounding box that surrounds all joints in each frame, then we expand the tight box by a given padding ratio. For example, if 'padding == 0.25', then the expanded box has unchanged center, and 1.25x width and height. Required keys in results are "img_shape", "keypoint", add or modified keys are "img_shape", "keypoint", "crop_quadruple". Args: padding (float): The padding size. Default: 0.25. threshold (int): The threshold for the tight bounding box. If the width or height of the tight bounding box is smaller than the threshold, we do not perform the compact operation. Default: 10. hw_ratio (float | tuple[float] | None): The hw_ratio of the expanded box. Float indicates the specific ratio and tuple indicates a ratio range. If set as None, it means there is no requirement on hw_ratio. Default: None. allow_imgpad (bool): Whether to allow expanding the box outside the image to meet the hw_ratio requirement. Default: True. Returns: type: Description of returned object. """ def __init__(self, padding=0.25, threshold=10, hw_ratio=None, allow_imgpad=True): self.padding = padding self.threshold = threshold if hw_ratio is not None: hw_ratio = _pair(hw_ratio) self.hw_ratio = hw_ratio self.allow_imgpad = allow_imgpad assert self.padding >= 0 def __call__(self, results): img_shape = results['img_shape'] h, w = img_shape kp = results['keypoint'] # Make NaN zero kp[np.isnan(kp)] = 0. kp_x = kp[..., 0] kp_y = kp[..., 1] min_x = np.min(kp_x[kp_x != 0], initial=np.Inf) min_y = np.min(kp_y[kp_y != 0], initial=np.Inf) max_x = np.max(kp_x[kp_x != 0], initial=-np.Inf) max_y = np.max(kp_y[kp_y != 0], initial=-np.Inf) # The compact area is too small if max_x - min_x < self.threshold or max_y - min_y < self.threshold: return results center = ((max_x + min_x) / 2, (max_y + min_y) / 2) half_width = (max_x - min_x) / 2 * (1 + self.padding) half_height = (max_y - min_y) / 2 * (1 + self.padding) if self.hw_ratio is not None: half_height = max(self.hw_ratio[0] * half_width, half_height) half_width = max(1 / self.hw_ratio[1] * half_height, half_width) min_x, max_x = center[0] - half_width, center[0] + half_width min_y, max_y = center[1] - half_height, center[1] + half_height # hot update if not self.allow_imgpad: min_x, min_y = int(max(0, min_x)), int(max(0, min_y)) max_x, max_y = int(min(w, max_x)), int(min(h, max_y)) else: min_x, min_y = int(min_x), int(min_y) max_x, max_y = int(max_x), int(max_y) kp_x[kp_x != 0] -= min_x kp_y[kp_y != 0] -= min_y new_shape = (max_y - min_y, max_x - min_x) results['img_shape'] = new_shape # the order is x, y, w, h (in [0, 1]), a tuple crop_quadruple = results.get('crop_quadruple', (0., 0., 1., 1.)) new_crop_quadruple = (min_x / w, min_y / h, (max_x - min_x) / w, (max_y - min_y) / h) crop_quadruple = _combine_quadruple(crop_quadruple, new_crop_quadruple) results['crop_quadruple'] = crop_quadruple return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(padding={self.padding}, ' f'threshold={self.threshold}, ' f'hw_ratio={self.hw_ratio}, ' f'allow_imgpad={self.allow_imgpad})') return repr_str @PIPELINES.register_module() class Imgaug: """Imgaug augmentation. Adds custom transformations from imgaug library. Please visit `https://imgaug.readthedocs.io/en/latest/index.html` to get more information. Two demo configs could be found in tsn and i3d config folder. It's better to use uint8 images as inputs since imgaug works best with numpy dtype uint8 and isn't well tested with other dtypes. It should be noted that not all of the augmenters have the same input and output dtype, which may cause unexpected results. Required keys are "imgs", "img_shape"(if "gt_bboxes" is not None) and "modality", added or modified keys are "imgs", "img_shape", "gt_bboxes" and "proposals". It is worth mentioning that `Imgaug` will NOT create custom keys like "interpolation", "crop_bbox", "flip_direction", etc. So when using `Imgaug` along with other mmaction2 pipelines, we should pay more attention to required keys. Two steps to use `Imgaug` pipeline: 1. Create initialization parameter `transforms`. There are three ways to create `transforms`. 1) string: only support `default` for now. e.g. `transforms='default'` 2) list[dict]: create a list of augmenters by a list of dicts, each dict corresponds to one augmenter. Every dict MUST contain a key named `type`. `type` should be a string(iaa.Augmenter's name) or an iaa.Augmenter subclass. e.g. `transforms=[dict(type='Rotate', rotate=(-20, 20))]` e.g. `transforms=[dict(type=iaa.Rotate, rotate=(-20, 20))]` 3) iaa.Augmenter: create an imgaug.Augmenter object. e.g. `transforms=iaa.Rotate(rotate=(-20, 20))` 2. Add `Imgaug` in dataset pipeline. It is recommended to insert imgaug pipeline before `Normalize`. A demo pipeline is listed as follows. ``` pipeline = [ dict( type='SampleFrames', clip_len=1, frame_interval=1, num_clips=16, ), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 256)), dict( type='MultiScaleCrop', input_size=224, scales=(1, 0.875, 0.75, 0.66), random_crop=False, max_wh_scale_gap=1, num_fixed_crops=13), dict(type='Resize', scale=(224, 224), keep_ratio=False), dict(type='Flip', flip_ratio=0.5), dict(type='Imgaug', transforms='default'), # dict(type='Imgaug', transforms=[ # dict(type='Rotate', rotate=(-20, 20)) # ]), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] ``` Args: transforms (str | list[dict] | :obj:`iaa.Augmenter`): Three different ways to create imgaug augmenter. """ def __init__(self, transforms): import imgaug.augmenters as iaa if transforms == 'default': self.transforms = self.default_transforms() elif isinstance(transforms, list): assert all(isinstance(trans, dict) for trans in transforms) self.transforms = transforms elif isinstance(transforms, iaa.Augmenter): self.aug = self.transforms = transforms else: raise ValueError('transforms must be `default` or a list of dicts' ' or iaa.Augmenter object') if not isinstance(transforms, iaa.Augmenter): self.aug = iaa.Sequential( [self.imgaug_builder(t) for t in self.transforms]) @staticmethod def default_transforms(): """Default transforms for imgaug. Implement RandAugment by imgaug. Please visit `https://arxiv.org/abs/1909.13719` for more information. Augmenters and hyper parameters are borrowed from the following repo: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py # noqa Miss one augmenter ``SolarizeAdd`` since imgaug doesn't support this. Returns: dict: The constructed RandAugment transforms. """ # RandAugment hyper params num_augmenters = 2 cur_magnitude, max_magnitude = 9, 10 cur_level = 1.0 * cur_magnitude / max_magnitude return [ dict( type='SomeOf', n=num_augmenters, children=[ dict( type='ShearX', shear=17.19 * cur_level * random.choice([-1, 1])), dict( type='ShearY', shear=17.19 * cur_level * random.choice([-1, 1])), dict( type='TranslateX', percent=.2 * cur_level * random.choice([-1, 1])), dict( type='TranslateY', percent=.2 * cur_level * random.choice([-1, 1])), dict( type='Rotate', rotate=30 * cur_level * random.choice([-1, 1])), dict(type='Posterize', nb_bits=max(1, int(4 * cur_level))), dict(type='Solarize', threshold=256 * cur_level), dict(type='EnhanceColor', factor=1.8 * cur_level + .1), dict(type='EnhanceContrast', factor=1.8 * cur_level + .1), dict( type='EnhanceBrightness', factor=1.8 * cur_level + .1), dict(type='EnhanceSharpness', factor=1.8 * cur_level + .1), dict(type='Autocontrast', cutoff=0), dict(type='Equalize'), dict(type='Invert', p=1.), dict( type='Cutout', nb_iterations=1, size=0.2 * cur_level, squared=True) ]) ] def imgaug_builder(self, cfg): """Import a module from imgaug. It follows the logic of :func:`build_from_cfg`. Use a dict object to create an iaa.Augmenter object. Args: cfg (dict): Config dict. It should at least contain the key "type". Returns: obj:`iaa.Augmenter`: The constructed imgaug augmenter. """ import imgaug.augmenters as iaa assert isinstance(cfg, dict) and 'type' in cfg args = cfg.copy() obj_type = args.pop('type') if mmcv.is_str(obj_type): obj_cls = getattr(iaa, obj_type) if hasattr(iaa, obj_type) \ else getattr(iaa.pillike, obj_type) elif issubclass(obj_type, iaa.Augmenter): obj_cls = obj_type else: raise TypeError( f'type must be a str or valid type, but got {type(obj_type)}') for aug_list_key in ['children', 'then_list', 'else_list']: if aug_list_key in args: args[aug_list_key] = [ self.imgaug_builder(child) for child in args[aug_list_key] ] return obj_cls(**args) def __repr__(self): repr_str = self.__class__.__name__ + f'(transforms={self.aug})' return repr_str def __call__(self, results): assert results['modality'] == 'RGB', 'Imgaug only support RGB images.' in_type = results['imgs'][0].dtype.type cur_aug = self.aug.to_deterministic() results['imgs'] = [ cur_aug.augment_image(frame) for frame in results['imgs'] ] img_h, img_w, _ = results['imgs'][0].shape out_type = results['imgs'][0].dtype.type assert in_type == out_type, \ ('Imgaug input dtype and output dtype are not the same. ', f'Convert from {in_type} to {out_type}') if 'gt_bboxes' in results: from imgaug.augmentables import bbs bbox_list = [ bbs.BoundingBox( x1=bbox[0], y1=bbox[1], x2=bbox[2], y2=bbox[3]) for bbox in results['gt_bboxes'] ] bboxes = bbs.BoundingBoxesOnImage( bbox_list, shape=results['img_shape']) bbox_aug, *_ = cur_aug.augment_bounding_boxes([bboxes]) results['gt_bboxes'] = [[ max(bbox.x1, 0), max(bbox.y1, 0), min(bbox.x2, img_w), min(bbox.y2, img_h) ] for bbox in bbox_aug.items] if 'proposals' in results: bbox_list = [ bbs.BoundingBox( x1=bbox[0], y1=bbox[1], x2=bbox[2], y2=bbox[3]) for bbox in results['proposals'] ] bboxes = bbs.BoundingBoxesOnImage( bbox_list, shape=results['img_shape']) bbox_aug, *_ = cur_aug.augment_bounding_boxes([bboxes]) results['proposals'] = [[ max(bbox.x1, 0), max(bbox.y1, 0), min(bbox.x2, img_w), min(bbox.y2, img_h) ] for bbox in bbox_aug.items] results['img_shape'] = (img_h, img_w) return results @PIPELINES.register_module() class Fuse: """Fuse lazy operations. Fusion order: crop -> resize -> flip Required keys are "imgs", "img_shape" and "lazy", added or modified keys are "imgs", "lazy". Required keys in "lazy" are "crop_bbox", "interpolation", "flip_direction". """ def __call__(self, results): if 'lazy' not in results: raise ValueError('No lazy operation detected') lazyop = results['lazy'] imgs = results['imgs'] # crop left, top, right, bottom = lazyop['crop_bbox'].round().astype(int) imgs = [img[top:bottom, left:right] for img in imgs] # resize img_h, img_w = results['img_shape'] if lazyop['interpolation'] is None: interpolation = 'bilinear' else: interpolation = lazyop['interpolation'] imgs = [ mmcv.imresize(img, (img_w, img_h), interpolation=interpolation) for img in imgs ] # flip if lazyop['flip']: for img in imgs: mmcv.imflip_(img, lazyop['flip_direction']) results['imgs'] = imgs del results['lazy'] return results @PIPELINES.register_module() class RandomCrop: """Vanilla square random crop that specifics the output size. Required keys in results are "img_shape", "keypoint" (optional), "imgs" (optional), added or modified keys are "keypoint", "imgs", "lazy"; Required keys in "lazy" are "flip", "crop_bbox", added or modified key is "crop_bbox". Args: size (int): The output size of the images. lazy (bool): Determine whether to apply lazy operation. Default: False. """ def __init__(self, size, lazy=False): if not isinstance(size, int): raise TypeError(f'Size must be an int, but got {type(size)}') self.size = size self.lazy = lazy @staticmethod def _crop_kps(kps, crop_bbox): return kps - crop_bbox[:2] @staticmethod def _crop_imgs(imgs, crop_bbox): x1, y1, x2, y2 = crop_bbox return [img[y1:y2, x1:x2] for img in imgs] @staticmethod def _box_crop(box, crop_bbox): """Crop the bounding boxes according to the crop_bbox. Args: box (np.ndarray): The bounding boxes. crop_bbox(np.ndarray): The bbox used to crop the original image. """ x1, y1, x2, y2 = crop_bbox img_w, img_h = x2 - x1, y2 - y1 box_ = box.copy() box_[..., 0::2] = np.clip(box[..., 0::2] - x1, 0, img_w - 1) box_[..., 1::2] = np.clip(box[..., 1::2] - y1, 0, img_h - 1) return box_ def _all_box_crop(self, results, crop_bbox): """Crop the gt_bboxes and proposals in results according to crop_bbox. Args: results (dict): All information about the sample, which contain 'gt_bboxes' and 'proposals' (optional). crop_bbox(np.ndarray): The bbox used to crop the original image. """ results['gt_bboxes'] = self._box_crop(results['gt_bboxes'], crop_bbox) if 'proposals' in results and results['proposals'] is not None: assert results['proposals'].shape[1] == 4 results['proposals'] = self._box_crop(results['proposals'], crop_bbox) return results def __call__(self, results): """Performs the RandomCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') img_h, img_w = results['img_shape'] assert self.size <= img_h and self.size <= img_w y_offset = 0 x_offset = 0 if img_h > self.size: y_offset = int(np.random.randint(0, img_h - self.size)) if img_w > self.size: x_offset = int(np.random.randint(0, img_w - self.size)) if 'crop_quadruple' not in results: results['crop_quadruple'] = np.array( [0, 0, 1, 1], # x, y, w, h dtype=np.float32) x_ratio, y_ratio = x_offset / img_w, y_offset / img_h w_ratio, h_ratio = self.size / img_w, self.size / img_h old_crop_quadruple = results['crop_quadruple'] old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1] old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3] new_crop_quadruple = [ old_x_ratio + x_ratio * old_w_ratio, old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio, h_ratio * old_h_ratio ] results['crop_quadruple'] = np.array( new_crop_quadruple, dtype=np.float32) new_h, new_w = self.size, self.size crop_bbox = np.array( [x_offset, y_offset, x_offset + new_w, y_offset + new_h]) results['crop_bbox'] = crop_bbox results['img_shape'] = (new_h, new_w) if not self.lazy: if 'keypoint' in results: results['keypoint'] = self._crop_kps(results['keypoint'], crop_bbox) if 'imgs' in results: results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox) else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Put Flip at last for now') # record crop_bbox in lazyop dict to ensure only crop once in Fuse lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox'] left = x_offset * (lazy_right - lazy_left) / img_w right = (x_offset + new_w) * (lazy_right - lazy_left) / img_w top = y_offset * (lazy_bottom - lazy_top) / img_h bottom = (y_offset + new_h) * (lazy_bottom - lazy_top) / img_h lazyop['crop_bbox'] = np.array([(lazy_left + left), (lazy_top + top), (lazy_left + right), (lazy_top + bottom)], dtype=np.float32) # Process entity boxes if 'gt_bboxes' in results: assert not self.lazy results = self._all_box_crop(results, results['crop_bbox']) return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(size={self.size}, ' f'lazy={self.lazy})') return repr_str @PIPELINES.register_module() class RandomResizedCrop(RandomCrop): """Random crop that specifics the area and height-weight ratio range. Required keys in results are "img_shape", "crop_bbox", "imgs" (optional), "keypoint" (optional), added or modified keys are "imgs", "keypoint", "crop_bbox" and "lazy"; Required keys in "lazy" are "flip", "crop_bbox", added or modified key is "crop_bbox". Args: area_range (Tuple[float]): The candidate area scales range of output cropped images. Default: (0.08, 1.0). aspect_ratio_range (Tuple[float]): The candidate aspect ratio range of output cropped images. Default: (3 / 4, 4 / 3). lazy (bool): Determine whether to apply lazy operation. Default: False. """ def __init__(self, area_range=(0.08, 1.0), aspect_ratio_range=(3 / 4, 4 / 3), lazy=False): self.area_range = area_range self.aspect_ratio_range = aspect_ratio_range self.lazy = lazy if not mmcv.is_tuple_of(self.area_range, float): raise TypeError(f'Area_range must be a tuple of float, ' f'but got {type(area_range)}') if not mmcv.is_tuple_of(self.aspect_ratio_range, float): raise TypeError(f'Aspect_ratio_range must be a tuple of float, ' f'but got {type(aspect_ratio_range)}') @staticmethod def get_crop_bbox(img_shape, area_range, aspect_ratio_range, max_attempts=10): """Get a crop bbox given the area range and aspect ratio range. Args: img_shape (Tuple[int]): Image shape area_range (Tuple[float]): The candidate area scales range of output cropped images. Default: (0.08, 1.0). aspect_ratio_range (Tuple[float]): The candidate aspect ratio range of output cropped images. Default: (3 / 4, 4 / 3). max_attempts (int): The maximum of attempts. Default: 10. max_attempts (int): Max attempts times to generate random candidate bounding box. If it doesn't qualified one, the center bounding box will be used. Returns: (list[int]) A random crop bbox within the area range and aspect ratio range. """ assert 0 < area_range[0] <= area_range[1] <= 1 assert 0 < aspect_ratio_range[0] <= aspect_ratio_range[1] img_h, img_w = img_shape area = img_h * img_w min_ar, max_ar = aspect_ratio_range aspect_ratios = np.exp( np.random.uniform( np.log(min_ar), np.log(max_ar), size=max_attempts)) target_areas = np.random.uniform(*area_range, size=max_attempts) * area candidate_crop_w = np.round(np.sqrt(target_areas * aspect_ratios)).astype(np.int32) candidate_crop_h = np.round(np.sqrt(target_areas / aspect_ratios)).astype(np.int32) for i in range(max_attempts): crop_w = candidate_crop_w[i] crop_h = candidate_crop_h[i] if crop_h <= img_h and crop_w <= img_w: x_offset = random.randint(0, img_w - crop_w) y_offset = random.randint(0, img_h - crop_h) return x_offset, y_offset, x_offset + crop_w, y_offset + crop_h # Fallback crop_size = min(img_h, img_w) x_offset = (img_w - crop_size) // 2 y_offset = (img_h - crop_size) // 2 return x_offset, y_offset, x_offset + crop_size, y_offset + crop_size def __call__(self, results): """Performs the RandomResizeCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') img_h, img_w = results['img_shape'] left, top, right, bottom = self.get_crop_bbox( (img_h, img_w), self.area_range, self.aspect_ratio_range) new_h, new_w = bottom - top, right - left if 'crop_quadruple' not in results: results['crop_quadruple'] = np.array( [0, 0, 1, 1], # x, y, w, h dtype=np.float32) x_ratio, y_ratio = left / img_w, top / img_h w_ratio, h_ratio = new_w / img_w, new_h / img_h old_crop_quadruple = results['crop_quadruple'] old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1] old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3] new_crop_quadruple = [ old_x_ratio + x_ratio * old_w_ratio, old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio, h_ratio * old_h_ratio ] results['crop_quadruple'] = np.array( new_crop_quadruple, dtype=np.float32) crop_bbox = np.array([left, top, right, bottom]) results['crop_bbox'] = crop_bbox results['img_shape'] = (new_h, new_w) if not self.lazy: if 'keypoint' in results: results['keypoint'] = self._crop_kps(results['keypoint'], crop_bbox) if 'imgs' in results: results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox) else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Put Flip at last for now') # record crop_bbox in lazyop dict to ensure only crop once in Fuse lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox'] left = left * (lazy_right - lazy_left) / img_w right = right * (lazy_right - lazy_left) / img_w top = top * (lazy_bottom - lazy_top) / img_h bottom = bottom * (lazy_bottom - lazy_top) / img_h lazyop['crop_bbox'] = np.array([(lazy_left + left), (lazy_top + top), (lazy_left + right), (lazy_top + bottom)], dtype=np.float32) if 'gt_bboxes' in results: assert not self.lazy results = self._all_box_crop(results, results['crop_bbox']) return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'area_range={self.area_range}, ' f'aspect_ratio_range={self.aspect_ratio_range}, ' f'lazy={self.lazy})') return repr_str @PIPELINES.register_module() class MultiScaleCrop(RandomCrop): """Crop images with a list of randomly selected scales. Randomly select the w and h scales from a list of scales. Scale of 1 means the base size, which is the minimal of image width and height. The scale level of w and h is controlled to be smaller than a certain value to prevent too large or small aspect ratio. Required keys are "img_shape", "imgs" (optional), "keypoint" (optional), added or modified keys are "imgs", "crop_bbox", "img_shape", "lazy" and "scales". Required keys in "lazy" are "crop_bbox", added or modified key is "crop_bbox". Args: input_size (int | tuple[int]): (w, h) of network input. scales (tuple[float]): width and height scales to be selected. max_wh_scale_gap (int): Maximum gap of w and h scale levels. Default: 1. random_crop (bool): If set to True, the cropping bbox will be randomly sampled, otherwise it will be sampler from fixed regions. Default: False. num_fixed_crops (int): If set to 5, the cropping bbox will keep 5 basic fixed regions: "upper left", "upper right", "lower left", "lower right", "center". If set to 13, the cropping bbox will append another 8 fix regions: "center left", "center right", "lower center", "upper center", "upper left quarter", "upper right quarter", "lower left quarter", "lower right quarter". Default: 5. lazy (bool): Determine whether to apply lazy operation. Default: False. """ def __init__(self, input_size, scales=(1, ), max_wh_scale_gap=1, random_crop=False, num_fixed_crops=5, lazy=False): self.input_size = _pair(input_size) if not mmcv.is_tuple_of(self.input_size, int): raise TypeError(f'Input_size must be int or tuple of int, ' f'but got {type(input_size)}') if not isinstance(scales, tuple): raise TypeError(f'Scales must be tuple, but got {type(scales)}') if num_fixed_crops not in [5, 13]: raise ValueError(f'Num_fix_crops must be in {[5, 13]}, ' f'but got {num_fixed_crops}') self.scales = scales self.max_wh_scale_gap = max_wh_scale_gap self.random_crop = random_crop self.num_fixed_crops = num_fixed_crops self.lazy = lazy def __call__(self, results): """Performs the MultiScaleCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') img_h, img_w = results['img_shape'] base_size = min(img_h, img_w) crop_sizes = [int(base_size * s) for s in self.scales] candidate_sizes = [] for i, h in enumerate(crop_sizes): for j, w in enumerate(crop_sizes): if abs(i - j) <= self.max_wh_scale_gap: candidate_sizes.append([w, h]) crop_size = random.choice(candidate_sizes) for i in range(2): if abs(crop_size[i] - self.input_size[i]) < 3: crop_size[i] = self.input_size[i] crop_w, crop_h = crop_size if self.random_crop: x_offset = random.randint(0, img_w - crop_w) y_offset = random.randint(0, img_h - crop_h) else: w_step = (img_w - crop_w) // 4 h_step = (img_h - crop_h) // 4 candidate_offsets = [ (0, 0), # upper left (4 * w_step, 0), # upper right (0, 4 * h_step), # lower left (4 * w_step, 4 * h_step), # lower right (2 * w_step, 2 * h_step), # center ] if self.num_fixed_crops == 13: extra_candidate_offsets = [ (0, 2 * h_step), # center left (4 * w_step, 2 * h_step), # center right (2 * w_step, 4 * h_step), # lower center (2 * w_step, 0 * h_step), # upper center (1 * w_step, 1 * h_step), # upper left quarter (3 * w_step, 1 * h_step), # upper right quarter (1 * w_step, 3 * h_step), # lower left quarter (3 * w_step, 3 * h_step) # lower right quarter ] candidate_offsets.extend(extra_candidate_offsets) x_offset, y_offset = random.choice(candidate_offsets) new_h, new_w = crop_h, crop_w crop_bbox = np.array( [x_offset, y_offset, x_offset + new_w, y_offset + new_h]) results['crop_bbox'] = crop_bbox results['img_shape'] = (new_h, new_w) results['scales'] = self.scales if 'crop_quadruple' not in results: results['crop_quadruple'] = np.array( [0, 0, 1, 1], # x, y, w, h dtype=np.float32) x_ratio, y_ratio = x_offset / img_w, y_offset / img_h w_ratio, h_ratio = new_w / img_w, new_h / img_h old_crop_quadruple = results['crop_quadruple'] old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1] old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3] new_crop_quadruple = [ old_x_ratio + x_ratio * old_w_ratio, old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio, h_ratio * old_h_ratio ] results['crop_quadruple'] = np.array( new_crop_quadruple, dtype=np.float32) if not self.lazy: if 'keypoint' in results: results['keypoint'] = self._crop_kps(results['keypoint'], crop_bbox) if 'imgs' in results: results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox) else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Put Flip at last for now') # record crop_bbox in lazyop dict to ensure only crop once in Fuse lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox'] left = x_offset * (lazy_right - lazy_left) / img_w right = (x_offset + new_w) * (lazy_right - lazy_left) / img_w top = y_offset * (lazy_bottom - lazy_top) / img_h bottom = (y_offset + new_h) * (lazy_bottom - lazy_top) / img_h lazyop['crop_bbox'] = np.array([(lazy_left + left), (lazy_top + top), (lazy_left + right), (lazy_top + bottom)], dtype=np.float32) if 'gt_bboxes' in results: assert not self.lazy results = self._all_box_crop(results, results['crop_bbox']) return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'input_size={self.input_size}, scales={self.scales}, ' f'max_wh_scale_gap={self.max_wh_scale_gap}, ' f'random_crop={self.random_crop}, ' f'num_fixed_crops={self.num_fixed_crops}, ' f'lazy={self.lazy})') return repr_str @PIPELINES.register_module() class Resize: """Resize images to a specific size. Required keys are "img_shape", "modality", "imgs" (optional), "keypoint" (optional), added or modified keys are "imgs", "img_shape", "keep_ratio", "scale_factor", "lazy", "resize_size". Required keys in "lazy" is None, added or modified key is "interpolation". Args: scale (float | Tuple[int]): If keep_ratio is True, it serves as scaling factor or maximum size: If it is a float number, the image will be rescaled by this factor, else if it is a tuple of 2 integers, the image will be rescaled as large as possible within the scale. Otherwise, it serves as (w, h) of output size. keep_ratio (bool): If set to True, Images will be resized without changing the aspect ratio. Otherwise, it will resize images to a given size. Default: True. interpolation (str): Algorithm used for interpolation: "nearest" | "bilinear". Default: "bilinear". lazy (bool): Determine whether to apply lazy operation. Default: False. """ def __init__(self, scale, keep_ratio=True, interpolation='bilinear', lazy=False): if isinstance(scale, float): if scale <= 0: raise ValueError(f'Invalid scale {scale}, must be positive.') elif isinstance(scale, tuple): max_long_edge = max(scale) max_short_edge = min(scale) if max_short_edge == -1: # assign np.inf to long edge for rescaling short edge later. scale = (np.inf, max_long_edge) else: raise TypeError( f'Scale must be float or tuple of int, but got {type(scale)}') self.scale = scale self.keep_ratio = keep_ratio self.interpolation = interpolation self.lazy = lazy def _resize_imgs(self, imgs, new_w, new_h): return [ mmcv.imresize( img, (new_w, new_h), interpolation=self.interpolation) for img in imgs ] @staticmethod def _resize_kps(kps, scale_factor): return kps * scale_factor @staticmethod def _box_resize(box, scale_factor): """Rescale the bounding boxes according to the scale_factor. Args: box (np.ndarray): The bounding boxes. scale_factor (np.ndarray): The scale factor used for rescaling. """ assert len(scale_factor) == 2 scale_factor = np.concatenate([scale_factor, scale_factor]) return box * scale_factor def __call__(self, results): """Performs the Resize augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') if 'scale_factor' not in results: results['scale_factor'] = np.array([1, 1], dtype=np.float32) img_h, img_w = results['img_shape'] if self.keep_ratio: new_w, new_h = mmcv.rescale_size((img_w, img_h), self.scale) else: new_w, new_h = self.scale self.scale_factor = np.array([new_w / img_w, new_h / img_h], dtype=np.float32) results['img_shape'] = (new_h, new_w) results['keep_ratio'] = self.keep_ratio results['scale_factor'] = results['scale_factor'] * self.scale_factor if not self.lazy: if 'imgs' in results: results['imgs'] = self._resize_imgs(results['imgs'], new_w, new_h) if 'keypoint' in results: results['keypoint'] = self._resize_kps(results['keypoint'], self.scale_factor) else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Put Flip at last for now') lazyop['interpolation'] = self.interpolation if 'gt_bboxes' in results: assert not self.lazy results['gt_bboxes'] = self._box_resize(results['gt_bboxes'], self.scale_factor) if 'proposals' in results and results['proposals'] is not None: assert results['proposals'].shape[1] == 4 results['proposals'] = self._box_resize( results['proposals'], self.scale_factor) return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'scale={self.scale}, keep_ratio={self.keep_ratio}, ' f'interpolation={self.interpolation}, ' f'lazy={self.lazy})') return repr_str @PIPELINES.register_module() class RandomRescale: """Randomly resize images so that the short_edge is resized to a specific size in a given range. The scale ratio is unchanged after resizing. Required keys are "imgs", "img_shape", "modality", added or modified keys are "imgs", "img_shape", "keep_ratio", "scale_factor", "resize_size", "short_edge". Args: scale_range (tuple[int]): The range of short edge length. A closed interval. interpolation (str): Algorithm used for interpolation: "nearest" | "bilinear". Default: "bilinear". """ def __init__(self, scale_range, interpolation='bilinear'): self.scale_range = scale_range # make sure scale_range is legal, first make sure the type is OK assert mmcv.is_tuple_of(scale_range, int) assert len(scale_range) == 2 assert scale_range[0] < scale_range[1] assert np.all([x > 0 for x in scale_range]) self.keep_ratio = True self.interpolation = interpolation def __call__(self, results): """Performs the Resize augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ short_edge = np.random.randint(self.scale_range[0], self.scale_range[1] + 1) resize = Resize((-1, short_edge), keep_ratio=True, interpolation=self.interpolation, lazy=False) results = resize(results) results['short_edge'] = short_edge return results def __repr__(self): scale_range = self.scale_range repr_str = (f'{self.__class__.__name__}(' f'scale_range=({scale_range[0]}, {scale_range[1]}), ' f'interpolation={self.interpolation})') return repr_str @PIPELINES.register_module() class Flip: """Flip the input images with a probability. Reverse the order of elements in the given imgs with a specific direction. The shape of the imgs is preserved, but the elements are reordered. Required keys are "img_shape", "modality", "imgs" (optional), "keypoint" (optional), added or modified keys are "imgs", "keypoint", "lazy" and "flip_direction". Required keys in "lazy" is None, added or modified key are "flip" and "flip_direction". The Flip augmentation should be placed after any cropping / reshaping augmentations, to make sure crop_quadruple is calculated properly. Args: flip_ratio (float): Probability of implementing flip. Default: 0.5. direction (str): Flip imgs horizontally or vertically. Options are "horizontal" | "vertical". Default: "horizontal". flip_label_map (Dict[int, int] | None): Transform the label of the flipped image with the specific label. Default: None. left_kp (list[int]): Indexes of left keypoints, used to flip keypoints. Default: None. right_kp (list[ind]): Indexes of right keypoints, used to flip keypoints. Default: None. lazy (bool): Determine whether to apply lazy operation. Default: False. """ _directions = ['horizontal', 'vertical'] def __init__(self, flip_ratio=0.5, direction='horizontal', flip_label_map=None, left_kp=None, right_kp=None, lazy=False): if direction not in self._directions: raise ValueError(f'Direction {direction} is not supported. ' f'Currently support ones are {self._directions}') self.flip_ratio = flip_ratio self.direction = direction self.flip_label_map = flip_label_map self.left_kp = left_kp self.right_kp = right_kp self.lazy = lazy def _flip_imgs(self, imgs, modality): _ = [mmcv.imflip_(img, self.direction) for img in imgs] lt = len(imgs) if modality == 'Flow': # The 1st frame of each 2 frames is flow-x for i in range(0, lt, 2): imgs[i] = mmcv.iminvert(imgs[i]) return imgs def _flip_kps(self, kps, kpscores, img_width): kp_x = kps[..., 0] kp_x[kp_x != 0] = img_width - kp_x[kp_x != 0] new_order = list(range(kps.shape[2])) if self.left_kp is not None and self.right_kp is not None: for left, right in zip(self.left_kp, self.right_kp): new_order[left] = right new_order[right] = left kps = kps[:, :, new_order] if kpscores is not None: kpscores = kpscores[:, :, new_order] return kps, kpscores @staticmethod def _box_flip(box, img_width): """Flip the bounding boxes given the width of the image. Args: box (np.ndarray): The bounding boxes. img_width (int): The img width. """ box_ = box.copy() box_[..., 0::4] = img_width - box[..., 2::4] box_[..., 2::4] = img_width - box[..., 0::4] return box_ def __call__(self, results): """Performs the Flip augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') assert self.direction == 'horizontal', ( 'Only horizontal flips are' 'supported for human keypoints') modality = results['modality'] if modality == 'Flow': assert self.direction == 'horizontal' flip = np.random.rand() < self.flip_ratio results['flip'] = flip results['flip_direction'] = self.direction img_width = results['img_shape'][1] if self.flip_label_map is not None and flip: results['label'] = self.flip_label_map.get(results['label'], results['label']) if not self.lazy: if flip: if 'imgs' in results: results['imgs'] = self._flip_imgs(results['imgs'], modality) if 'keypoint' in results: kp = results['keypoint'] kpscore = results.get('keypoint_score', None) kp, kpscore = self._flip_kps(kp, kpscore, img_width) results['keypoint'] = kp if 'keypoint_score' in results: results['keypoint_score'] = kpscore else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Use one Flip please') lazyop['flip'] = flip lazyop['flip_direction'] = self.direction if 'gt_bboxes' in results and flip: assert not self.lazy and self.direction == 'horizontal' width = results['img_shape'][1] results['gt_bboxes'] = self._box_flip(results['gt_bboxes'], width) if 'proposals' in results and results['proposals'] is not None: assert results['proposals'].shape[1] == 4 results['proposals'] = self._box_flip(results['proposals'], width) return results def __repr__(self): repr_str = ( f'{self.__class__.__name__}(' f'flip_ratio={self.flip_ratio}, direction={self.direction}, ' f'flip_label_map={self.flip_label_map}, lazy={self.lazy})') return repr_str @PIPELINES.register_module() class Normalize: """Normalize images with the given mean and std value. Required keys are "imgs", "img_shape", "modality", added or modified keys are "imgs" and "img_norm_cfg". If modality is 'Flow', additional keys "scale_factor" is required Args: mean (Sequence[float]): Mean values of different channels. std (Sequence[float]): Std values of different channels. to_bgr (bool): Whether to convert channels from RGB to BGR. Default: False. adjust_magnitude (bool): Indicate whether to adjust the flow magnitude on 'scale_factor' when modality is 'Flow'. Default: False. """ def __init__(self, mean, std, to_bgr=False, adjust_magnitude=False): if not isinstance(mean, Sequence): raise TypeError( f'Mean must be list, tuple or np.ndarray, but got {type(mean)}' ) if not isinstance(std, Sequence): raise TypeError( f'Std must be list, tuple or np.ndarray, but got {type(std)}') self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) self.to_bgr = to_bgr self.adjust_magnitude = adjust_magnitude def __call__(self, results): modality = results['modality'] if modality == 'RGB': n = len(results['imgs']) h, w, c = results['imgs'][0].shape imgs = np.empty((n, h, w, c), dtype=np.float32) for i, img in enumerate(results['imgs']): imgs[i] = img for img in imgs: mmcv.imnormalize_(img, self.mean, self.std, self.to_bgr) results['imgs'] = imgs results['img_norm_cfg'] = dict( mean=self.mean, std=self.std, to_bgr=self.to_bgr) return results if modality == 'Flow': num_imgs = len(results['imgs']) assert num_imgs % 2 == 0 assert self.mean.shape[0] == 2 assert self.std.shape[0] == 2 n = num_imgs // 2 h, w = results['imgs'][0].shape x_flow = np.empty((n, h, w), dtype=np.float32) y_flow = np.empty((n, h, w), dtype=np.float32) for i in range(n): x_flow[i] = results['imgs'][2 * i] y_flow[i] = results['imgs'][2 * i + 1] x_flow = (x_flow - self.mean[0]) / self.std[0] y_flow = (y_flow - self.mean[1]) / self.std[1] if self.adjust_magnitude: x_flow = x_flow * results['scale_factor'][0] y_flow = y_flow * results['scale_factor'][1] imgs = np.stack([x_flow, y_flow], axis=-1) results['imgs'] = imgs args = dict( mean=self.mean, std=self.std, to_bgr=self.to_bgr, adjust_magnitude=self.adjust_magnitude) results['img_norm_cfg'] = args return results raise NotImplementedError def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'mean={self.mean}, ' f'std={self.std}, ' f'to_bgr={self.to_bgr}, ' f'adjust_magnitude={self.adjust_magnitude})') return repr_str @PIPELINES.register_module() class ColorJitter: """Perform ColorJitter to each img. Required keys are "imgs", added or modified keys are "imgs". Args: brightness (float | tuple[float]): The jitter range for brightness, if set as a float, the range will be (1 - brightness, 1 + brightness). Default: 0.5. contrast (float | tuple[float]): The jitter range for contrast, if set as a float, the range will be (1 - contrast, 1 + contrast). Default: 0.5. saturation (float | tuple[float]): The jitter range for saturation, if set as a float, the range will be (1 - saturation, 1 + saturation). Default: 0.5. hue (float | tuple[float]): The jitter range for hue, if set as a float, the range will be (-hue, hue). Default: 0.1. """ @staticmethod def check_input(val, max, base): if isinstance(val, tuple): assert base - max <= val[0] <= val[1] <= base + max return val assert val <= max return (base - val, base + val) @staticmethod def rgb_to_grayscale(img): return 0.2989 * img[..., 0] + 0.587 * img[..., 1] + 0.114 * img[..., 2] @staticmethod def adjust_contrast(img, factor): val = np.mean(ColorJitter.rgb_to_grayscale(img)) return factor * img + (1 - factor) * val @staticmethod def adjust_saturation(img, factor): gray = np.stack([ColorJitter.rgb_to_grayscale(img)] * 3, axis=-1) return factor * img + (1 - factor) * gray @staticmethod def adjust_hue(img, factor): img = np.clip(img, 0, 255).astype(np.uint8) hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) offset = int(factor * 255) hsv[..., 0] = (hsv[..., 0] + offset) % 180 img = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB) return img.astype(np.float32) def __init__(self, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1): self.brightness = self.check_input(brightness, 1, 1) self.contrast = self.check_input(contrast, 1, 1) self.saturation = self.check_input(saturation, 1, 1) self.hue = self.check_input(hue, 0.5, 0) self.fn_idx = np.random.permutation(4) def __call__(self, results): imgs = results['imgs'] num_clips, clip_len = 1, len(imgs) new_imgs = [] for i in range(num_clips): b = np.random.uniform( low=self.brightness[0], high=self.brightness[1]) c = np.random.uniform(low=self.contrast[0], high=self.contrast[1]) s = np.random.uniform( low=self.saturation[0], high=self.saturation[1]) h = np.random.uniform(low=self.hue[0], high=self.hue[1]) start, end = i * clip_len, (i + 1) * clip_len for img in imgs[start:end]: img = img.astype(np.float32) for fn_id in self.fn_idx: if fn_id == 0 and b != 1: img *= b if fn_id == 1 and c != 1: img = self.adjust_contrast(img, c) if fn_id == 2 and s != 1: img = self.adjust_saturation(img, s) if fn_id == 3 and h != 0: img = self.adjust_hue(img, h) img = np.clip(img, 0, 255).astype(np.uint8) new_imgs.append(img) results['imgs'] = new_imgs return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'brightness={self.brightness}, ' f'contrast={self.contrast}, ' f'saturation={self.saturation}, ' f'hue={self.hue})') return repr_str @PIPELINES.register_module() class CenterCrop(RandomCrop): """Crop the center area from images. Required keys are "img_shape", "imgs" (optional), "keypoint" (optional), added or modified keys are "imgs", "keypoint", "crop_bbox", "lazy" and "img_shape". Required keys in "lazy" is "crop_bbox", added or modified key is "crop_bbox". Args: crop_size (int | tuple[int]): (w, h) of crop size. lazy (bool): Determine whether to apply lazy operation. Default: False. """ def __init__(self, crop_size, lazy=False): self.crop_size = _pair(crop_size) self.lazy = lazy if not mmcv.is_tuple_of(self.crop_size, int): raise TypeError(f'Crop_size must be int or tuple of int, ' f'but got {type(crop_size)}') def __call__(self, results): """Performs the CenterCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, self.lazy) if 'keypoint' in results: assert not self.lazy, ('Keypoint Augmentations are not compatible ' 'with lazy == True') img_h, img_w = results['img_shape'] crop_w, crop_h = self.crop_size left = (img_w - crop_w) // 2 top = (img_h - crop_h) // 2 right = left + crop_w bottom = top + crop_h new_h, new_w = bottom - top, right - left crop_bbox = np.array([left, top, right, bottom]) results['crop_bbox'] = crop_bbox results['img_shape'] = (new_h, new_w) if 'crop_quadruple' not in results: results['crop_quadruple'] = np.array( [0, 0, 1, 1], # x, y, w, h dtype=np.float32) x_ratio, y_ratio = left / img_w, top / img_h w_ratio, h_ratio = new_w / img_w, new_h / img_h old_crop_quadruple = results['crop_quadruple'] old_x_ratio, old_y_ratio = old_crop_quadruple[0], old_crop_quadruple[1] old_w_ratio, old_h_ratio = old_crop_quadruple[2], old_crop_quadruple[3] new_crop_quadruple = [ old_x_ratio + x_ratio * old_w_ratio, old_y_ratio + y_ratio * old_h_ratio, w_ratio * old_w_ratio, h_ratio * old_h_ratio ] results['crop_quadruple'] = np.array( new_crop_quadruple, dtype=np.float32) if not self.lazy: if 'keypoint' in results: results['keypoint'] = self._crop_kps(results['keypoint'], crop_bbox) if 'imgs' in results: results['imgs'] = self._crop_imgs(results['imgs'], crop_bbox) else: lazyop = results['lazy'] if lazyop['flip']: raise NotImplementedError('Put Flip at last for now') # record crop_bbox in lazyop dict to ensure only crop once in Fuse lazy_left, lazy_top, lazy_right, lazy_bottom = lazyop['crop_bbox'] left = left * (lazy_right - lazy_left) / img_w right = right * (lazy_right - lazy_left) / img_w top = top * (lazy_bottom - lazy_top) / img_h bottom = bottom * (lazy_bottom - lazy_top) / img_h lazyop['crop_bbox'] = np.array([(lazy_left + left), (lazy_top + top), (lazy_left + right), (lazy_top + bottom)], dtype=np.float32) if 'gt_bboxes' in results: assert not self.lazy results = self._all_box_crop(results, results['crop_bbox']) return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(crop_size={self.crop_size}, ' f'lazy={self.lazy})') return repr_str @PIPELINES.register_module() class ThreeCrop: """Crop images into three crops. Crop the images equally into three crops with equal intervals along the shorter side. Required keys are "imgs", "img_shape", added or modified keys are "imgs", "crop_bbox" and "img_shape". Args: crop_size(int | tuple[int]): (w, h) of crop size. """ def __init__(self, crop_size): self.crop_size = _pair(crop_size) if not mmcv.is_tuple_of(self.crop_size, int): raise TypeError(f'Crop_size must be int or tuple of int, ' f'but got {type(crop_size)}') def __call__(self, results): """Performs the ThreeCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, False) if 'gt_bboxes' in results or 'proposals' in results: warnings.warn('ThreeCrop cannot process bounding boxes') imgs = results['imgs'] img_h, img_w = results['imgs'][0].shape[:2] crop_w, crop_h = self.crop_size assert crop_h == img_h or crop_w == img_w if crop_h == img_h: w_step = (img_w - crop_w) // 2 offsets = [ (0, 0), # left (2 * w_step, 0), # right (w_step, 0), # middle ] elif crop_w == img_w: h_step = (img_h - crop_h) // 2 offsets = [ (0, 0), # top (0, 2 * h_step), # down (0, h_step), # middle ] cropped = [] crop_bboxes = [] for x_offset, y_offset in offsets: bbox = [x_offset, y_offset, x_offset + crop_w, y_offset + crop_h] crop = [ img[y_offset:y_offset + crop_h, x_offset:x_offset + crop_w] for img in imgs ] cropped.extend(crop) crop_bboxes.extend([bbox for _ in range(len(imgs))]) crop_bboxes = np.array(crop_bboxes) results['imgs'] = cropped results['crop_bbox'] = crop_bboxes results['img_shape'] = results['imgs'][0].shape[:2] return results def __repr__(self): repr_str = f'{self.__class__.__name__}(crop_size={self.crop_size})' return repr_str @PIPELINES.register_module() class TenCrop: """Crop the images into 10 crops (corner + center + flip). Crop the four corners and the center part of the image with the same given crop_size, and flip it horizontally. Required keys are "imgs", "img_shape", added or modified keys are "imgs", "crop_bbox" and "img_shape". Args: crop_size(int | tuple[int]): (w, h) of crop size. """ def __init__(self, crop_size): self.crop_size = _pair(crop_size) if not mmcv.is_tuple_of(self.crop_size, int): raise TypeError(f'Crop_size must be int or tuple of int, ' f'but got {type(crop_size)}') def __call__(self, results): """Performs the TenCrop augmentation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ _init_lazy_if_proper(results, False) if 'gt_bboxes' in results or 'proposals' in results: warnings.warn('TenCrop cannot process bounding boxes') imgs = results['imgs'] img_h, img_w = results['imgs'][0].shape[:2] crop_w, crop_h = self.crop_size w_step = (img_w - crop_w) // 4 h_step = (img_h - crop_h) // 4 offsets = [ (0, 0), # upper left (4 * w_step, 0), # upper right (0, 4 * h_step), # lower left (4 * w_step, 4 * h_step), # lower right (2 * w_step, 2 * h_step), # center ] img_crops = list() crop_bboxes = list() for x_offset, y_offsets in offsets: crop = [ img[y_offsets:y_offsets + crop_h, x_offset:x_offset + crop_w] for img in imgs ] flip_crop = [np.flip(c, axis=1).copy() for c in crop] bbox = [x_offset, y_offsets, x_offset + crop_w, y_offsets + crop_h] img_crops.extend(crop) img_crops.extend(flip_crop) crop_bboxes.extend([bbox for _ in range(len(imgs) * 2)]) crop_bboxes = np.array(crop_bboxes) results['imgs'] = img_crops results['crop_bbox'] = crop_bboxes results['img_shape'] = results['imgs'][0].shape[:2] return results def __repr__(self): repr_str = f'{self.__class__.__name__}(crop_size={self.crop_size})' return repr_str @PIPELINES.register_module() class AudioAmplify: """Amplify the waveform. Required keys are "audios", added or modified keys are "audios", "amplify_ratio". Args: ratio (float): The ratio used to amplify the audio waveform. """ def __init__(self, ratio): if isinstance(ratio, float): self.ratio = ratio else: raise TypeError('Amplification ratio should be float.') def __call__(self, results): """Perform the audio amplification. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ assert 'audios' in results results['audios'] *= self.ratio results['amplify_ratio'] = self.ratio return results def __repr__(self): repr_str = f'{self.__class__.__name__}(ratio={self.ratio})' return repr_str @PIPELINES.register_module() class MelSpectrogram: """MelSpectrogram. Transfer an audio wave into a melspectogram figure. Required keys are "audios", "sample_rate", "num_clips", added or modified keys are "audios". Args: window_size (int): The window size in millisecond. Default: 32. step_size (int): The step size in millisecond. Default: 16. n_mels (int): Number of mels. Default: 80. fixed_length (int): The sample length of melspectrogram maybe not exactly as wished due to different fps, fix the length for batch collation by truncating or padding. Default: 128. """ def __init__(self, window_size=32, step_size=16, n_mels=80, fixed_length=128): if all( isinstance(x, int) for x in [window_size, step_size, n_mels, fixed_length]): self.window_size = window_size self.step_size = step_size self.n_mels = n_mels self.fixed_length = fixed_length else: raise TypeError('All arguments should be int.') def __call__(self, results): """Perform MelSpectrogram transformation. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ try: import librosa except ImportError: raise ImportError('Install librosa first.') signals = results['audios'] sample_rate = results['sample_rate'] n_fft = int(round(sample_rate * self.window_size / 1000)) hop_length = int(round(sample_rate * self.step_size / 1000)) melspectrograms = list() for clip_idx in range(results['num_clips']): clip_signal = signals[clip_idx] mel = librosa.feature.melspectrogram( y=clip_signal, sr=sample_rate, n_fft=n_fft, hop_length=hop_length, n_mels=self.n_mels) if mel.shape[0] >= self.fixed_length: mel = mel[:self.fixed_length, :] else: mel = np.pad( mel, ((0, mel.shape[-1] - self.fixed_length), (0, 0)), mode='edge') melspectrograms.append(mel) results['audios'] = np.array(melspectrograms) return results def __repr__(self): repr_str = (f'{self.__class__.__name__}' f'(window_size={self.window_size}), ' f'step_size={self.step_size}, ' f'n_mels={self.n_mels}, ' f'fixed_length={self.fixed_length})') return repr_str