# Copyright (c) OpenMMLab. All rights reserved. import argparse import copy as cp import os import os.path as osp import shutil import cv2 import mmcv import numpy as np import torch from mmcv import DictAction from mmcv.runner import load_checkpoint from mmaction.models import build_detector try: from mmdet.apis import inference_detector, init_detector except (ImportError, ModuleNotFoundError): raise ImportError('Failed to import `inference_detector` and ' '`init_detector` form `mmdet.apis`. These apis are ' 'required in this demo! ') try: import moviepy.editor as mpy except ImportError: raise ImportError('Please install moviepy to enable output file') FONTFACE = cv2.FONT_HERSHEY_DUPLEX FONTSCALE = 0.5 FONTCOLOR = (255, 255, 255) # BGR, white MSGCOLOR = (128, 128, 128) # BGR, gray THICKNESS = 1 LINETYPE = 1 def hex2color(h): """Convert the 6-digit hex string to tuple of 3 int value (RGB)""" return (int(h[:2], 16), int(h[2:4], 16), int(h[4:], 16)) plate_blue = '03045e-023e8a-0077b6-0096c7-00b4d8-48cae4' plate_blue = plate_blue.split('-') plate_blue = [hex2color(h) for h in plate_blue] plate_green = '004b23-006400-007200-008000-38b000-70e000' plate_green = plate_green.split('-') plate_green = [hex2color(h) for h in plate_green] def visualize(frames, annotations, plate=plate_blue, max_num=5): """Visualize frames with predicted annotations. Args: frames (list[np.ndarray]): Frames for visualization, note that len(frames) % len(annotations) should be 0. annotations (list[list[tuple]]): The predicted results. plate (str): The plate used for visualization. Default: plate_blue. max_num (int): Max number of labels to visualize for a person box. Default: 5. Returns: list[np.ndarray]: Visualized frames. """ assert max_num + 1 <= len(plate) plate = [x[::-1] for x in plate] frames_ = cp.deepcopy(frames) nf, na = len(frames), len(annotations) assert nf % na == 0 nfpa = len(frames) // len(annotations) anno = None h, w, _ = frames[0].shape scale_ratio = np.array([w, h, w, h]) for i in range(na): anno = annotations[i] if anno is None: continue for j in range(nfpa): ind = i * nfpa + j frame = frames_[ind] for ann in anno: box = ann[0] label = ann[1] if not len(label): continue score = ann[2] box = (box * scale_ratio).astype(np.int64) st, ed = tuple(box[:2]), tuple(box[2:]) cv2.rectangle(frame, st, ed, plate[0], 2) for k, lb in enumerate(label): if k >= max_num: break text = abbrev(lb) text = ': '.join([text, str(score[k])]) location = (0 + st[0], 18 + k * 18 + st[1]) textsize = cv2.getTextSize(text, FONTFACE, FONTSCALE, THICKNESS)[0] textwidth = textsize[0] diag0 = (location[0] + textwidth, location[1] - 14) diag1 = (location[0], location[1] + 2) cv2.rectangle(frame, diag0, diag1, plate[k + 1], -1) cv2.putText(frame, text, location, FONTFACE, FONTSCALE, FONTCOLOR, THICKNESS, LINETYPE) return frames_ def parse_args(): parser = argparse.ArgumentParser(description='MMAction2 demo') parser.add_argument( '--config', default=('configs/detection/ava/' 'slowonly_omnisource_pretrained_r101_8x8x1_20e_ava_rgb.py'), help='spatio temporal detection config file path') parser.add_argument( '--checkpoint', default=('https://download.openmmlab.com/mmaction/detection/ava/' 'slowonly_omnisource_pretrained_r101_8x8x1_20e_ava_rgb/' 'slowonly_omnisource_pretrained_r101_8x8x1_20e_ava_rgb' '_20201217-16378594.pth'), help='spatio temporal detection checkpoint file/url') parser.add_argument( '--det-config', default='demo/faster_rcnn_r50_fpn_2x_coco.py', help='human detection config file path (from mmdet)') parser.add_argument( '--det-checkpoint', default=('http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/' 'faster_rcnn_r50_fpn_2x_coco/' 'faster_rcnn_r50_fpn_2x_coco_' 'bbox_mAP-0.384_20200504_210434-a5d8aa15.pth'), help='human detection checkpoint file/url') parser.add_argument( '--det-score-thr', type=float, default=0.9, help='the threshold of human detection score') parser.add_argument( '--action-score-thr', type=float, default=0.5, help='the threshold of human action score') parser.add_argument('--video', help='video file/url') parser.add_argument( '--label-map', default='tools/data/ava/label_map.txt', help='label map file') parser.add_argument( '--device', type=str, default='cuda:0', help='CPU/CUDA device option') parser.add_argument( '--out-filename', default='demo/stdet_demo.mp4', help='output filename') parser.add_argument( '--predict-stepsize', default=8, type=int, help='give out a prediction per n frames') parser.add_argument( '--output-stepsize', default=4, type=int, help=('show one frame per n frames in the demo, we should have: ' 'predict_stepsize % output_stepsize == 0')) parser.add_argument( '--output-fps', default=6, type=int, help='the fps of demo video output') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, default={}, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. For example, ' "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'") args = parser.parse_args() return args def frame_extraction(video_path): """Extract frames given video_path. Args: video_path (str): The video_path. """ # Load the video, extract frames into ./tmp/video_name target_dir = osp.join('./tmp', osp.basename(osp.splitext(video_path)[0])) os.makedirs(target_dir, exist_ok=True) # Should be able to handle videos up to several hours frame_tmpl = osp.join(target_dir, 'img_{:06d}.jpg') vid = cv2.VideoCapture(video_path) frames = [] frame_paths = [] flag, frame = vid.read() cnt = 0 while flag: frames.append(frame) frame_path = frame_tmpl.format(cnt + 1) frame_paths.append(frame_path) cv2.imwrite(frame_path, frame) cnt += 1 flag, frame = vid.read() return frame_paths, frames def detection_inference(args, frame_paths): """Detect human boxes given frame paths. Args: args (argparse.Namespace): The arguments. frame_paths (list[str]): The paths of frames to do detection inference. Returns: list[np.ndarray]: The human detection results. """ model = init_detector(args.det_config, args.det_checkpoint, args.device) assert model.CLASSES[0] == 'person', ('We require you to use a detector ' 'trained on COCO') results = [] print('Performing Human Detection for each frame') prog_bar = mmcv.ProgressBar(len(frame_paths)) for frame_path in frame_paths: result = inference_detector(model, frame_path) # We only keep human detections with score larger than det_score_thr result = result[0][result[0][:, 4] >= args.det_score_thr] results.append(result) prog_bar.update() return results def load_label_map(file_path): """Load Label Map. Args: file_path (str): The file path of label map. Returns: dict: The label map (int -> label name). """ lines = open(file_path).readlines() lines = [x.strip().split(': ') for x in lines] return {int(x[0]): x[1] for x in lines} def abbrev(name): """Get the abbreviation of label name: 'take (an object) from (a person)' -> 'take ... from ...' """ while name.find('(') != -1: st, ed = name.find('('), name.find(')') name = name[:st] + '...' + name[ed + 1:] return name def pack_result(human_detection, result, img_h, img_w): """Short summary. Args: human_detection (np.ndarray): Human detection result. result (type): The predicted label of each human proposal. img_h (int): The image height. img_w (int): The image width. Returns: tuple: Tuple of human proposal, label name and label score. """ human_detection[:, 0::2] /= img_w human_detection[:, 1::2] /= img_h results = [] if result is None: return None for prop, res in zip(human_detection, result): res.sort(key=lambda x: -x[1]) results.append( (prop.data.cpu().numpy(), [x[0] for x in res], [x[1] for x in res])) return results def main(): args = parse_args() frame_paths, original_frames = frame_extraction(args.video) num_frame = len(frame_paths) h, w, _ = original_frames[0].shape # resize frames to shortside 256 new_w, new_h = mmcv.rescale_size((w, h), (256, np.Inf)) frames = [mmcv.imresize(img, (new_w, new_h)) for img in original_frames] w_ratio, h_ratio = new_w / w, new_h / h # Get clip_len, frame_interval and calculate center index of each clip config = mmcv.Config.fromfile(args.config) config.merge_from_dict(args.cfg_options) val_pipeline = config.data.val.pipeline sampler = [x for x in val_pipeline if x['type'] == 'SampleAVAFrames'][0] clip_len, frame_interval = sampler['clip_len'], sampler['frame_interval'] window_size = clip_len * frame_interval assert clip_len % 2 == 0, 'We would like to have an even clip_len' # Note that it's 1 based here timestamps = np.arange(window_size // 2, num_frame + 1 - window_size // 2, args.predict_stepsize) # Load label_map label_map = load_label_map(args.label_map) try: if config['data']['train']['custom_classes'] is not None: label_map = { id + 1: label_map[cls] for id, cls in enumerate(config['data']['train'] ['custom_classes']) } except KeyError: pass # Get Human detection results center_frames = [frame_paths[ind - 1] for ind in timestamps] human_detections = detection_inference(args, center_frames) for i in range(len(human_detections)): det = human_detections[i] det[:, 0:4:2] *= w_ratio det[:, 1:4:2] *= h_ratio human_detections[i] = torch.from_numpy(det[:, :4]).to(args.device) # Get img_norm_cfg img_norm_cfg = config['img_norm_cfg'] if 'to_rgb' not in img_norm_cfg and 'to_bgr' in img_norm_cfg: to_bgr = img_norm_cfg.pop('to_bgr') img_norm_cfg['to_rgb'] = to_bgr img_norm_cfg['mean'] = np.array(img_norm_cfg['mean']) img_norm_cfg['std'] = np.array(img_norm_cfg['std']) # Build STDET model try: # In our spatiotemporal detection demo, different actions should have # the same number of bboxes. config['model']['test_cfg']['rcnn']['action_thr'] = .0 except KeyError: pass config.model.backbone.pretrained = None model = build_detector(config.model, test_cfg=config.get('test_cfg')) load_checkpoint(model, args.checkpoint, map_location='cpu') model.to(args.device) model.eval() predictions = [] print('Performing SpatioTemporal Action Detection for each clip') assert len(timestamps) == len(human_detections) prog_bar = mmcv.ProgressBar(len(timestamps)) for timestamp, proposal in zip(timestamps, human_detections): if proposal.shape[0] == 0: predictions.append(None) continue start_frame = timestamp - (clip_len // 2 - 1) * frame_interval frame_inds = start_frame + np.arange(0, window_size, frame_interval) frame_inds = list(frame_inds - 1) imgs = [frames[ind].astype(np.float32) for ind in frame_inds] _ = [mmcv.imnormalize_(img, **img_norm_cfg) for img in imgs] # THWC -> CTHW -> 1CTHW input_array = np.stack(imgs).transpose((3, 0, 1, 2))[np.newaxis] input_tensor = torch.from_numpy(input_array).to(args.device) with torch.no_grad(): result = model( return_loss=False, img=[input_tensor], img_metas=[[dict(img_shape=(new_h, new_w))]], proposals=[[proposal]]) result = result[0] prediction = [] # N proposals for i in range(proposal.shape[0]): prediction.append([]) # Perform action score thr for i in range(len(result)): if i + 1 not in label_map: continue for j in range(proposal.shape[0]): if result[i][j, 4] > args.action_score_thr: prediction[j].append((label_map[i + 1], result[i][j, 4])) predictions.append(prediction) prog_bar.update() results = [] for human_detection, prediction in zip(human_detections, predictions): results.append(pack_result(human_detection, prediction, new_h, new_w)) def dense_timestamps(timestamps, n): """Make it nx frames.""" old_frame_interval = (timestamps[1] - timestamps[0]) start = timestamps[0] - old_frame_interval / n * (n - 1) / 2 new_frame_inds = np.arange( len(timestamps) * n) * old_frame_interval / n + start return new_frame_inds.astype(np.int64) dense_n = int(args.predict_stepsize / args.output_stepsize) frames = [ cv2.imread(frame_paths[i - 1]) for i in dense_timestamps(timestamps, dense_n) ] print('Performing visualization') vis_frames = visualize(frames, results) vid = mpy.ImageSequenceClip([x[:, :, ::-1] for x in vis_frames], fps=args.output_fps) vid.write_videofile(args.out_filename) tmp_frame_dir = osp.dirname(frame_paths[0]) shutil.rmtree(tmp_frame_dir) if __name__ == '__main__': main()