import json from pathlib import Path from typing import Optional import torch class Tokenizer: def __init__(self, checkpoint_dir: Path) -> None: # some checkpoints have both files, `.model` takes precedence if (vocabulary_path := checkpoint_dir / "tokenizer.model").is_file(): from sentencepiece import SentencePieceProcessor self.processor = SentencePieceProcessor(model_file=str(vocabulary_path)) self.backend = "sentencepiece" self.bos_id = self.processor.bos_id() self.eos_id = self.processor.eos_id() elif (vocabulary_path := checkpoint_dir / "tokenizer.json").is_file(): from tokenizers import Tokenizer as HFTokenizer self.processor = HFTokenizer.from_file(str(vocabulary_path)) self.backend = "huggingface" with open(checkpoint_dir / "tokenizer_config.json") as fp: config = json.load(fp) bos_token = config.get("bos_token") self.bos_id = self.token_to_id(bos_token) if bos_token is not None else None self.eos_id = self.token_to_id(config["eos_token"]) else: raise NotImplementedError @property def vocab_size(self) -> int: if self.backend == "huggingface": return self.processor.get_vocab_size(with_added_tokens=False) if self.backend == "sentencepiece": return self.processor.vocab_size() raise RuntimeError def token_to_id(self, token: str) -> int: if self.backend == "huggingface": id_ = self.processor.token_to_id(token) elif self.backend == "sentencepiece": id_ = self.processor.piece_to_id(token) else: raise RuntimeError if id_ is None: raise ValueError(f"token {token!r} not found in the collection.") return id_ def encode( self, string: str, device: Optional[torch.device] = None, bos: bool = False, eos: bool = True, max_length: int = -1, ) -> torch.Tensor: if self.backend == "huggingface": tokens = self.processor.encode(string).ids elif self.backend == "sentencepiece": tokens = self.processor.encode(string) else: raise RuntimeError if bos: bos_id = self.bos_id if bos_id is None: raise NotImplementedError("This tokenizer does not defined a bos token") tokens = [bos_id] + tokens if eos: tokens = tokens + [self.eos_id] if max_length > 0: tokens = tokens[:max_length] return torch.tensor(tokens, dtype=torch.int, device=device) def decode(self, tensor: torch.Tensor) -> str: tokens = [tensor.item()] if tensor.ndim == 0 else tensor.tolist() return self.processor.decode(tokens)