--- title: "TimeGEN-1 Quickstart (Azure)" description: "Quickstart guide to deploy and use TimeGEN-1 on Azure with the Nixtla Python SDK for time series forecasting." icon: "rocket" --- TimeGEN-1 is TimeGPT optimized for Azure infrastructure. It is a production-ready generative pretrained transformer for time series, capable of accurately predicting domains such as retail, electricity, finance, and IoT with minimal code. Azure-native generative forecasting with TimeGEN-1 for streamlined deployments. • Demand forecasting\ • Electricity load prediction\ • Financial time series\ • IoT data analysis 1. Visit [ml.azure.com](https://ml.azure.com) and sign in (or create a Microsoft account if needed). 2. Click **Models** in the sidebar. 3. Search for **TimeGEN** in the catalog and select **TimeGEN-1**. 4. Click **Deploy** to create an endpoint. ![TimeGEN-1 model catalog deployment option](https://github.com/Nixtla/nixtla/blob/main/nbs/img/azure-deploy.png?raw=true) 5. Click **Endpoint** in the sidebar. 6. Copy the **base URL** and **API Key** shown for your TimeGEN-1 endpoint. ![Endpoint URL and API key](https://github.com/Nixtla/nixtla/blob/main/nbs/img/azure-endpoint.png?raw=true) Install the **nixtla** package using pip: ```shell Install nixtla SDK pip install nixtla ``` Import the Nixtla client into your Python environment: ```python Import NixtlaClient from nixtla import NixtlaClient ``` Then create a client instance using your TimeGEN-1 endpoint credentials: ```python Instantiate NixtlaClient nixtla_client = NixtlaClient( base_url="YOUR_BASE_URL", api_key="YOUR_API_KEY" ) ``` In this example, we'll use the classic **AirPassengers** dataset to demonstrate forecasting. The dataset shows monthly passenger counts in Australia between 1949 and 1960. ```python Load AirPassengers dataset import pandas as pd df = pd.read_csv( 'https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv' ) df.head() ``` Use the Nixtla client to quickly visualize your data: ```python Visualize time series nixtla_client.plot(df, time_col='timestamp', target_col='value') ``` ![AirPassengers time series visualization](https://raw.githubusercontent.com/Nixtla/nixtla/readme_docs/nbs/_docs/docs/getting-started/22_azure_quickstart_files/figure-markdown_strict/cell-12-output-1.png) • Ensure the target column has no missing or non-numeric values.\ • Avoid gaps in date stamps (for the specific frequency) from the initial to final timestamp—missing dates are not automatically imputed.\ • Datestamps must be in a pandas-readable format. ([See Pandas reference](https://pandas.pydata.org/docs/reference/api/pandas.to_datetime.html)) See [Data Requirements](/data_requirements/data_requirements) for details. In most notebook environments, figures display automatically. To save a figure locally, run: ```python Save plot figure fig = nixtla_client.plot(df, time_col='timestamp', target_col='value') fig.savefig('plot.png', bbox_inches='tight') ``` Use the `forecast` method from the Nixtla client to forecast the next 12 months. • `df`: Pandas DataFrame with time series data\ • `h`: Forecast horizon (number of steps ahead)\ • `freq`: Time series frequency ([pandas frequency aliases](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases))\ • `time_col`: Name of timestamp column\ • `target_col`: Name of forecast variable ```python Generate 12-month forecast timegen_fcst_df = nixtla_client.forecast( df=df, h=12, freq='MS', time_col='timestamp', target_col='value' ) timegen_fcst_df.head() ``` Forecast endpoint call logs will be displayed for validation and preprocessing steps. ```bash Forecast API call logs INFO:nixtla.nixtla_client:Validating inputs... INFO:nixtla.nixtla_client:Preprocessing dataframes... INFO:nixtla.nixtla_client:Inferred freq: MS INFO:nixtla.nixtla_client:Restricting input... INFO:nixtla.nixtla_client:Calling Forecast Endpoint... ``` Example output: | | timestamp | TimeGPT | | --- | ---------- | ---------- | | 0 | 1961-01-01 | 437.837921 | | 1 | 1961-02-01 | 426.062714 | | 2 | 1961-03-01 | 463.116547 | | 3 | 1961-04-01 | 478.244507 | | 4 | 1961-05-01 | 505.646484 | Visualize the forecast results: ```python Visualize forecast results nixtla_client.plot(df, timegen_fcst_df, time_col='timestamp', target_col='value') ``` ![Forecast visualization AirPassengers](https://raw.githubusercontent.com/Nixtla/nixtla/readme_docs/nbs/_docs/docs/getting-started/22_azure_quickstart_files/figure-markdown_strict/cell-14-output-1.png)