---
title: "Forecasting Quickstart"
description: "Get started quickly with TimeGPT forecasting using the Nixtla API."
icon: "rocket"
---
[](https://colab.research.google.com/github/Nixtla/nixtla/blob/main/nbs/docs/capabilities/forecast/01_quickstart.ipynb)
# Quickstart
TimeGPT makes forecasting straightforward with the `forecast` method in the Nixtla API. Pass in your DataFrame, specify the time and target columns, and call `forecast`. You can also visualize results with the `plot` method.
Detailed guidance on data requirements is available [here](https://docs.nixtla.io/docs/getting-started-data_requirements).
Make sure you have the latest Nixtla Client installed, then import the required libraries:
```bash Nixtla Client Installation
pip install nixtla
```
```python Import Libraries
import pandas as pd
from nixtla import NixtlaClient
```
Provide your API key from Nixtla to authenticate:
```python Nixtla Client Standard Initialization
nixtla_client = NixtlaClient(
# defaults to os.environ.get("NIXTLA_API_KEY")
api_key='my_api_key_provided_by_nixtla'
)
```
Use an Azure AI endpoint
If you'd like to use Azure AI, set the `base_url` to your Azure endpoint:
```python Nixtla Client Azure AI Endpoint
nixtla_client = NixtlaClient(
base_url="your azure ai endpoint",
api_key="your api_key"
)
```
```python Load Data and Run Forecast
# Read data
df = pd.read_csv("https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv")
# Forecast for the next 12 time steps
forecast_df = nixtla_client.forecast(
df=df,
h=12,
time_col='timestamp',
target_col="value"
)
```
```python Plot Forecast Results
# Plot predictions
nixtla_client.plot(
df=df,
forecasts_df=forecast_df,
time_col='timestamp',
target_col='value'
)
```
Below is an example of log output when running a forecast:
```bash Forecast Process Logs
INFO:nixtla.nixtla_client:Validating inputs...
INFO:nixtla.nixtla_client:Preprocessing dataframes...
INFO:nixtla.nixtla_client:Inferred freq: MS
INFO:nixtla.nixtla_client:Restricting input...
INFO:nixtla.nixtla_client:Calling Forecast Endpoint...
```

**Available models in Azure AI**
To use an Azure AI endpoint for anomaly detection, set the `model` parameter to `"azureai"`:
```python Azure AI Anomaly Detection
nixtla_client.detect_anomalies(
...,
model="azureai"
)
```
Default option for general forecasting needs.
Optimized for extended forecast horizons. [Learn more here](https://docs.nixtla.io/docs/tutorials-long_horizon_forecasting).