---
title: "Prediction Intervals"
description: "Learn how to use the level parameter to generate prediction intervals that quantify forecast uncertainty."
icon: "chart-candlestick"
---
Prediction intervals measure the uncertainty around forecasted values. By specifying a confidence level, you can visualize the range in which future observations are expected to fall.
The **level** parameter accepts values between 0 and 100 (including decimals). For example, `[80]` represents an 80% confidence interval.
## Overview
Use the `forecast` method's **level** parameter to generate prediction intervals. This helps quantify the uncertainty around your forecasts.
[](https://colab.research.google.com/github/Nixtla/nixtla/blob/main/nbs/docs/capabilities/forecast/10_prediction_intervals.ipynb)
```python Import Dependencies
import pandas as pd
from nixtla import NixtlaClient
```
```python Initialize NixtlaClient
nixtla_client = NixtlaClient(
# defaults to os.environ.get("NIXTLA_API_KEY")
api_key='my_api_key_provided_by_nixtla'
)
```
**Use an Azure AI endpoint**
To use an Azure AI endpoint, set the `base_url` argument as follows:
```python Azure AI Endpoint Configuration
nixtla_client = NixtlaClient(
base_url="your azure ai endpoint",
api_key="your api_key"
)
```
```python Load Dataset
df = pd.read_csv(
"https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv"
)
```
```python Generate 80% Interval Forecast
forecast_df = nixtla_client.forecast(
df=df,
h=12,
time_col='timestamp',
target_col='value',
level=[80]
)
```
```python Plot Forecast and Intervals
nixtla_client.plot(
df=df,
forecasts_df=forecast_df,
time_col='timestamp',
target_col='value',
level=[80]
)
```
Logs indicate the validation and preprocessing steps, along with the inferred data frequency:
```bash Log Output
INFO:nixtla.nixtla_client:Validating inputs...
INFO:nixtla.nixtla_client:Preprocessing dataframes...
INFO:nixtla.nixtla_client:Inferred freq: MS
INFO:nixtla.nixtla_client:Restricting input...
INFO:nixtla.nixtla_client:Calling Forecast Endpoint...
```

**Available Models in Azure AI**
If you are using an Azure AI endpoint, set the `model` parameter to `"azureai"`:
```python Azure AI Models
nixtla_client.forecast(..., model="azureai")
```
The public API supports two models:
- `timegpt-1` (default)
- `timegpt-1-long-horizon`
See [this tutorial](https://docs.nixtla.io/docs/tutorials-long_horizon_forecasting) for guidance on using **timegpt-1-long-horizon**.
For more information on uncertainty estimation, refer to the tutorials about [quantile forecasts](https://docs.nixtla.io/docs/tutorials-quantile_forecasts) and [prediction intervals](https://docs.nixtla.io/docs/tutorials-prediction_intervals).