--- title: "Hierarchical Forecasting" description: "Learn how to use TimeGPT for hierarchical forecasting across multiple levels." icon: "diagram-project" --- ## What is Hierarchical Forecasting? Hierarchical forecasting involves generating forecasts for multiple time series that share a hierarchical structure (e.g., product demand by category, department, or region). The goal is to ensure that forecasts are coherent across each level of the hierarchy. Hierarchical forecasting can be particularly important when you need to generate forecasts at different granularities (e.g., country, state, region) and ensure they align with each other and aggregate correctly at higher levels. Using TimeGPT, you can create forecasts for multiple related time series and then apply hierarchical forecasting methods from [HierarchicalForecast](https://nixtlaverse.nixtla.io/hierarchicalforecast/index.html) to reconcile those forecasts across your specified hierarchy. ## Why use Hierarchical Forecasting? - Ensures consistency: Forecasts at lower levels add up to higher-level forecasts. - Improves accuracy: Reconciliation methods often yield more robust predictions. - Facilitates deeper insights: Understand how smaller segments contribute to overall trends. ## Tutorial [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Nixtla/nixtla/blob/main/nbs/docs/tutorials/14_hierarchical_forecasting.ipynb) ### Step 1: Install, Import and Initialize Start by installing the required packages. ```shell pip install nixtla pip install hierarchicalforecast ``` Next, initialize the TimeGPT NixtlaClient. ```python import pandas as pd import numpy as np from nixtla import NixtlaClient nixtla_client = NixtlaClient( api_key='my_api_key_provided_by_nixtla' ) ``` ### Step 2: Load and Prepare Data This tutorial uses the Australian Tourism dataset from [Forecasting: Principles and Practices](https://otexts.com/fpp3/). The dataset contains different levels of hierarchical data, from the entire country of Australia down to individual regions. Map of Australia color coded by state. Australia hierarchical structure. The dataset provides only the lowest-level series, so higher-level series need to be aggregated explicitly. Let's load and preprocess the dataset. ```python Y_df = pd.read_csv( 'https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/tourism.csv' ) Y_df = Y_df.rename({'Trips': 'y', 'Quarter': 'ds'}, axis=1) Y_df.insert(0, 'Country', 'Australia') Y_df = Y_df[['Country', 'Region', 'State', 'Purpose', 'ds', 'y']] Y_df['ds'] = Y_df['ds'].str.replace(r'(\d+) (Q\d)', r'\1-\2', regex=True) Y_df['ds'] = pd.to_datetime(Y_df['ds']) Y_df.head(10) ``` | Country | Region | State | Purpose | ds | y | | --------- | -------- | --------------- | -------- | ---------- | ---------- | | Australia | Adelaide | South Australia | Business | 1998-01-01 | 135.077690 | | Australia | Adelaide | South Australia | Business | 1998-04-01 | 109.987316 | | Australia | Adelaide | South Australia | Business | 1998-07-01 | 166.034687 | | Australia | Adelaide | South Australia | Business | 1998-10-01 | 127.160464 | | Australia | Adelaide | South Australia | Business | 1999-01-01 | 137.448533 | | Australia | Adelaide | South Australia | Business | 1999-04-01 | 199.912586 | | Australia | Adelaide | South Australia | Business | 1999-07-01 | 169.355090 | | Australia | Adelaide | South Australia | Business | 1999-10-01 | 134.357937 | | Australia | Adelaide | South Australia | Business | 2000-01-01 | 154.034398 | | Australia | Adelaide | South Australia | Business | 2000-04-01 | 168.776364 | We define the dataset hierarchies explicitly. Each level in the list describes one view of the hierarchy: ```python spec = [ ['Country'], ['Country', 'State'], ['Country', 'Purpose'], ['Country', 'State', 'Region'], ['Country', 'State', 'Purpose'], ['Country', 'State', 'Region', 'Purpose'] ] ``` Then, use `aggregate` from `HierarchicalForecast` to generate the aggregated series: ```python from hierarchicalforecast.utils import aggregate Y_df, S_df, tags = aggregate(Y_df, spec) Y_df.head(10) ``` | unique_id | ds | y | | --------- | ---------- | ------------ | | Australia | 1998-01-01 | 23182.197269 | | Australia | 1998-04-01 | 20323.380067 | | Australia | 1998-07-01 | 19826.640511 | | Australia | 1998-10-01 | 20830.129891 | | Australia | 1999-01-01 | 22087.353380 | | Australia | 1999-04-01 | 21458.373285 | | Australia | 1999-07-01 | 19914.192508 | | Australia | 1999-10-01 | 20027.925640 | | Australia | 2000-01-01 | 22339.294779 | | Australia | 2000-04-01 | 19941.063482 | Next, create the train/test splits. Here, we use the last two years (eight quarters) of data for testing: ```python Y_test_df = Y_df.groupby('unique_id').tail(8) Y_train_df = Y_df.drop(Y_test_df.index) ``` ### Step 3: Hierarchical Forecasting Using TimeGPT Now we'll generate base forecasts across all series using TimeGPT and then apply hierarchical reconciliation to ensure the forecasts align across each level. #### Generate Base Forecasts with TimeGPT Obtain forecasts with TimeGPT for all series in your training data. ```python timegpt_fcst = nixtla_client.forecast( df=Y_train_df, h=8, freq='QS', add_history=True ) ``` Next, separate the generated forecasts into in-sample (historical) and out-of-sample (forecasted) periods: ```python timegpt_fcst_insample = timegpt_fcst.query("ds < '2016-01-01'") timegpt_fcst_outsample = timegpt_fcst.query("ds >= '2016-01-01'") ``` #### Visualize TimeGPT Forecasts Quickly visualize the forecasts for different hierarchy levels. Here, we look at the entire country, the state of Queensland, the Brisbane region, and holidays in Brisbane: ```python nixtla_client.plot( Y_df, timegpt_fcst_outsample, max_insample_length=4 * 12, unique_ids=[ 'Australia', 'Australia/Queensland', 'Australia/Queensland/Brisbane', 'Australia/Queensland/Brisbane/Holiday' ] ) ``` ![hier_plot1](/images/docs/hier1.png) #### Apply Hierarchical Reconciliation We use `MinTrace` methods to reconcile forecasts across all levels of the hierarchy. ```python from hierarchicalforecast.methods import MinTrace from hierarchicalforecast.core import HierarchicalReconciliation reconcilers = [ MinTrace(method='ols'), MinTrace(method='mint_shrink') ] hrec = HierarchicalReconciliation(reconcilers=reconcilers) Y_df_with_insample_fcsts = timegpt_fcst_insample.merge(Y_df.copy()) Y_rec_df = hrec.reconcile( Y_hat_df=timegpt_fcst_outsample, Y_df=Y_df_with_insample_fcsts, S=S_df, tags=tags ) ``` Now, let's plot the reconciled forecasts to ensure they make sense across the full country → state → region → purpose hierarchy: ```python nixtla_client.plot( Y_df, Y_rec_df, max_insample_length=4 * 12, unique_ids=[ 'Australia', 'Australia/Queensland', 'Australia/Queensland/Brisbane', 'Australia/Queensland/Brisbane/Holiday' ] ) ``` ![hier_plot1](/images/docs/hier2.png) ### Step 4: Evaluate Forecast Accuracy Finally, evaluate your forecast performance using RMSE for different levels of the hierarchy, from total (country) to bottom-level (region/purpose). ```python from hierarchicalforecast.evaluation import evaluate from utilsforecast.losses import rmse eval_tags = { 'Total': tags['Country'], 'Purpose': tags['Country/Purpose'], 'State': tags['Country/State'], 'Regions': tags['Country/State/Region'], 'Bottom': tags['Country/State/Region/Purpose'] } evaluation = evaluate( df=Y_rec_df.merge(Y_test_df, on=['unique_id', 'ds']), tags=eval_tags, train_df=Y_train_df, metrics=[rmse] ) evaluation[evaluation.select_dtypes(np.number).columns] = evaluation.select_dtypes(np.number).map('{:.2f}'.format) evaluation ``` | | level | metric | TimeGPT | TimeGPT/MinTrace_method-ols | TimeGPT/MinTrace_method-mint_shrink | | --- | ------- | ------ | ------- | --------------------------- | ----------------------------------- | | 0 | Total | rmse | 1433.07 | 1436.07 | 1627.43 | | 1 | Purpose | rmse | 482.09 | 475.64 | 507.50 | | 2 | State | rmse | 275.85 | 278.39 | 294.28 | | 3 | Regions | rmse | 49.40 | 47.91 | 47.99 | | 4 | Bottom | rmse | 19.32 | 19.11 | 18.86 | | 5 | Overall | rmse | 38.66 | 38.21 | 39.16 | ## Conclusion We made a small improvement in overall RMSE by reconciling the forecasts with `MinTrace(ols)`, and made them slightly worse using `MinTrace(mint_shrink)`, indicating that the base forecasts were relatively strong already. However, we now have coherent forecasts too - so not only did we make a (small) accuracy improvement, we also got coherency to the hierarchy as a result of our reconciliation step. ## References - [Hyndman, Rob J., and George Athanasopoulos (2021). Forecasting: Principles and Practice](https://otexts.com/fpp3/).