---
title: "Categorical Variables"
description: "Learn how to incorporate external categorical variables in your TimeGPT forecasts to improve accuracy."
icon: "input-text"
---
## What Are Categorical Variables?
Categorical variables are external factors that take on a limited range of discrete values, grouping observations by categories. For example, "Sporting" or "Cultural" events in a dataset describing product demand.
By capturing unique external conditions, categorical variables enhance the predictive power of your model and can reduce forecasting error. They are easy to incorporate by merging each time series data point with its corresponding categorical data.
This tutorial demonstrates how to incorporate categorical (discrete) variables into TimeGPT forecasts.
## How to Use Categorical Variables in TimeGPT
[](https://colab.research.google.com/github/Nixtla/nixtla/blob/main/nbs/docs/tutorials/03_categorical_variables.ipynb)
### Step 1: Import Packages and Initialize the Nixtla Client
Make sure you have the necessary libraries installed: pandas, nixtla, and datasetsforecast.
```python
import pandas as pd
import os
from nixtla import NixtlaClient
from datasetsforecast.m5 import M5
# Initialize the Nixtla Client
nixtla_client = NixtlaClient(
api_key='my_api_key_provided_by_nixtla'
)
```
### Step 2: Load M5 Data
We use the **M5 dataset** — a collection of daily product sales demands across 10 US stores — to showcase how categorical variables can improve forecasts.
Start by loading the M5 dataset and converting the date columns to datetime objects.
```python
Y_df, X_df, _ = M5.load(directory=os.getcwd())
Y_df['ds'] = pd.to_datetime(Y_df['ds'])
X_df['ds'] = pd.to_datetime(X_df['ds'])
Y_df.head(10)
```
| unique_id | ds | y |
|-----------|----|---|
| FOODS_1_001_CA_1 | 2011-01-29 | 3.0 |
| FOODS_1_001_CA_1 | 2011-01-30 | 0.0 |
| FOODS_1_001_CA_1 | 2011-01-31 | 0.0 |
| FOODS_1_001_CA_1 | 2011-02-01 | 1.0 |
| FOODS_1_001_CA_1 | 2011-02-02 | 4.0 |
| FOODS_1_001_CA_1 | 2011-02-03 | 2.0 |
| FOODS_1_001_CA_1 | 2011-02-04 | 0.0 |
| FOODS_1_001_CA_1 | 2011-02-05 | 2.0 |
| FOODS_1_001_CA_1 | 2011-02-06 | 0.0 |
| FOODS_1_001_CA_1 | 2011-02-07 | 0.0 |
Extract the categorical columns from the X_df dataframe.
```python
X_df = X_df[['unique_id', 'ds', 'event_type_1']]
X_df.head(10)
```
| unique_id | ds | event_type_1 |
|-----------|----|--------------|
| FOODS_1_001_CA_1 | 2011-01-29 | nan |
| FOODS_1_001_CA_1 | 2011-01-30 | nan |
| FOODS_1_001_CA_1 | 2011-01-31 | nan |
| FOODS_1_001_CA_1 | 2011-02-01 | nan |
| FOODS_1_001_CA_1 | 2011-02-02 | nan |
| FOODS_1_001_CA_1 | 2011-02-03 | nan |
| FOODS_1_001_CA_1 | 2011-02-04 | nan |
| FOODS_1_001_CA_1 | 2011-02-05 | nan |
| FOODS_1_001_CA_1 | 2011-02-06 | Sporting |
| FOODS_1_001_CA_1 | 2011-02-07 | nan |
Notice that there is a Sporting event on February 6, 2011, listed under `event_type_1`.
### Step 3: Prepare Data for Forecasting
We'll select a specific product to demonstrate how to incorporate categorical features into TimeGPT forecasts.
#### Select a High-Selling Product and Merge Data
Start by selecting a high-selling product and merging the data.
```python
product = 'FOODS_3_090_CA_3'
Y_df_product = Y_df.query('unique_id == @product')
X_df_product = X_df.query('unique_id == @product')
df = Y_df_product.merge(X_df_product)
df.head(10)
```
| unique_id | ds | y | event_type_1 |
|-----------|----|---|--------------|
| FOODS_3_090_CA_3 | 2011-01-29 | 108.0 | nan |
| FOODS_3_090_CA_3 | 2011-01-30 | 132.0 | nan |
| FOODS_3_090_CA_3 | 2011-01-31 | 102.0 | nan |
| FOODS_3_090_CA_3 | 2011-02-01 | 120.0 | nan |
| FOODS_3_090_CA_3 | 2011-02-02 | 106.0 | nan |
| FOODS_3_090_CA_3 | 2011-02-03 | 123.0 | nan |
| FOODS_3_090_CA_3 | 2011-02-04 | 279.0 | nan |
| FOODS_3_090_CA_3 | 2011-02-05 | 175.0 | nan |
| FOODS_3_090_CA_3 | 2011-02-06 | 186.0 | Sporting |
| FOODS_3_090_CA_3 | 2011-02-07 | 120.0 | nan |
#### One-Hot Encode Categorical Events
Encode categorical variables using one-hot encoding. One-hot encoding transforms each category into a separate column containing binary indicators (0 or 1).
```python
event_type_1_ohe = pd.get_dummies(df['event_type_1'], dtype=int)
df = pd.concat([df, event_type_1_ohe], axis=1)
df = df.drop(columns=['event_type_1'])
df.tail(10)
```
| unique_id | ds | y | Cultural | National | Religious | Sporting | nan |
|-----------|----|---|----------|----------|-----------|-----------|-----|
| FOODS_3_090_CA_3 | 2016-06-10 | 140.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-06-11 | 151.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-06-12 | 87.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-06-13 | 67.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-06-14 | 50.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-06-15 | 58.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-06-16 | 116.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-06-17 | 124.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-06-18 | 167.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-06-19 | 118.0 | 0 | 0 | 0 | 1 | 0 |
#### Prepare Future External Variables
Select future external variables for Feb 1-7, 2016.
```python
future_ex_vars_df = df.drop(columns=['y']).query("ds >= '2016-02-01' & ds <= '2016-02-07'")
```
Separate training data before Feb 1, 2016.
```python
df_train = df.query("ds < '2016-02-01'")
df_train.tail(10)
```
| unique_id | ds | y | Cultural | National | Religious | Sporting | nan |
|-----------|----|---|----------|----------|-----------|-----------|-----|
| FOODS_3_090_CA_3 | 2016-01-22 | 94.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-01-23 | 144.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-01-24 | 146.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-01-25 | 87.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-01-26 | 73.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-01-27 | 62.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-01-28 | 64.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-01-29 | 102.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-01-30 | 113.0 | 0 | 0 | 0 | 0 | 1 |
| FOODS_3_090_CA_3 | 2016-01-31 | 98.0 | 0 | 0 | 0 | 0 | 1 |
### Step 4: Forecast Product Demand
To evaluate the impact of categorical variables, we'll forecast product demand with and without them.
#### Forecast Without Categorical Variables
```python
timegpt_fcst_without_cat_vars_df = nixtla_client.forecast(
df=df_train,
h=7,
level=[80, 90]
)
timegpt_fcst_without_cat_vars_df.head()
```
| unique_id | ds | TimeGPT | TimeGPT-lo-90 | TimeGPT-lo-80 | TimeGPT-hi-80 | TimeGPT-hi-90 |
|-----------|----|---------|---------------|---------------|---------------|---------------|
| FOODS_3_090_CA_3 | 2016-02-01 | 73.304092 | 53.449049 | 54.795078 | 91.813107 | 93.159136 |
| FOODS_3_090_CA_3 | 2016-02-02 | 66.335518 | 47.510669 | 50.274136 | 82.396899 | 85.160367 |
| FOODS_3_090_CA_3 | 2016-02-03 | 65.881630 | 36.218617 | 41.388896 | 90.374364 | 95.544643 |
| FOODS_3_090_CA_3 | 2016-02-04 | 72.371864 | -26.683115 | 25.097362 | 119.646367 | 171.426844 |
| FOODS_3_090_CA_3 | 2016-02-05 | 95.141045 | -2.084882 | 34.027078 | 156.255011 | 192.366971 |
Visualize the forecast without categorical variables.
```python
nixtla_client.plot(
df[['unique_id', 'ds', 'y']].query("ds <= '2016-02-07'"),
timegpt_fcst_without_cat_vars_df,
max_insample_length=28,
)
```

TimeGPT already provides a reasonable forecast, but it seems to somewhat underforecast the peak on the 6th of February 2016 - the day before the Super Bowl.
#### Forecast With Categorical Variables
```python
timegpt_fcst_with_cat_vars_df = nixtla_client.forecast(
df=df_train,
X_df=future_ex_vars_df,
h=7,
level=[80, 90]
)
timegpt_fcst_with_cat_vars_df.head()
```
| unique_id | ds | TimeGPT | TimeGPT-lo-90 | TimeGPT-lo-80 | TimeGPT-hi-80 | TimeGPT-hi-90 |
|-----------|----|---------|---------------|---------------|---------------|---------------|
| FOODS_3_090_CA_3 | 2016-02-01 | 70.661271 | -0.204378 | 14.593348 | 126.729194 | 141.526919 |
| FOODS_3_090_CA_3 | 2016-02-02 | 65.566941 | -20.394326 | 11.654239 | 119.479643 | 151.528208 |
| FOODS_3_090_CA_3 | 2016-02-03 | 68.510010 | -33.713710 | 6.732952 | 130.287069 | 170.733731 |
| FOODS_3_090_CA_3 | 2016-02-04 | 75.417710 | -40.974649 | 4.751767 | 146.083653 | 191.810069 |
| FOODS_3_090_CA_3 | 2016-02-05 | 97.340302 | -57.385361 | 18.253812 | 176.426792 | 252.065965 |
Visualize the forecast with categorical variables.
```python
# Visualize the forecast with categorical variables
nixtla_client.plot(
df[['unique_id', 'ds', 'y']].query("ds <= '2016-02-07'"),
timegpt_fcst_with_cat_vars_df,
max_insample_length=28,
)
```

## 5. Evaluate Forecast Accuracy
Finally, we calculate the **Mean Absolute Error (MAE)** for the forecasts with and without categorical variables.
```python
# Create target dataframe
df_target = df[['unique_id', 'ds', 'y']].query("ds >= '2016-02-01' & ds <= '2016-02-07'")
# Rename forecast columns
timegpt_fcst_without_cat_vars_df = timegpt_fcst_without_cat_vars_df.rename(columns={'TimeGPT': 'TimeGPT-without-cat-vars'})
timegpt_fcst_with_cat_vars_df = timegpt_fcst_with_cat_vars_df.rename(columns={'TimeGPT': 'TimeGPT-with-cat-vars'})
# Merge forecasts with target dataframe
df_target = df_target.merge(timegpt_fcst_without_cat_vars_df[['unique_id', 'ds', 'TimeGPT-without-cat-vars']])
df_target = df_target.merge(timegpt_fcst_with_cat_vars_df[['unique_id', 'ds', 'TimeGPT-with-cat-vars']])
# Compute errors
mean_absolute_errors = mae(df_target, ['TimeGPT-without-cat-vars', 'TimeGPT-with-cat-vars'])
```
| unique_id | TimeGPT-without-cat-vars | TimeGPT-with-cat-vars |
|------------------|--------------------------|-----------------------|
| FOODS_3_090_CA_3 | 24.285649 | 20.028514 |
Including categorical variables noticeably improves forecast accuracy, reducing MAE by about 20%.
## Conclusion
Categorical variables are powerful additions to TimeGPT forecasts, helping capture valuable external factors. By properly encoding these variables and merging them with your time series, you can significantly enhance predictive performance.
Continue exploring more advanced techniques or different datasets to further improve your TimeGPT forecasting models.