{ "$schema": "https://mintlify.com/schema.json", "name": "Nixtla", "logo": { "light": "/light.png", "dark": "/dark.png" }, "favicon": "/favicon.svg", "colors": { "primary": "#0E0E0E", "light": "#FAFAFA", "dark": "#0E0E0E", "anchors": { "from": "#2AD0CA", "to": "#0E00F8" } }, "topbarCtaButton": { "type": "github", "url": "https://github.com/Nixtla/nixtla" }, "navigation": [ { "group": "Getting Started", "pages": [ "docs/getting-started/1_introduction", "docs/getting-started/2_quickstart", "docs/getting-started/21_polars_quickstart", "docs/getting-started/22_azure_quickstart", "docs/getting-started/3_setting_up_your_api_key", "docs/getting-started/4_data_requirements", "docs/getting-started/41_pricing", "docs/getting-started/5_faq", "docs/getting-started/6_glossary", "docs/getting-started/7_why_timegpt" ] }, { "group": "Capabilities", "pages": [ { "group": "Forecast", "pages": [ "docs/capabilities/forecast/01_quickstart", "docs/capabilities/forecast/02_exogenous_variables", "docs/capabilities/forecast/03_holidays_special_dates", "docs/capabilities/forecast/04_categorical_variables", "docs/capabilities/forecast/05_longhorizon", "docs/capabilities/forecast/06_multiple_series", "docs/capabilities/forecast/07_finetuning", "docs/capabilities/forecast/08_custom_loss_function", "docs/capabilities/forecast/09_cross_validation", "docs/capabilities/forecast/10_prediction_intervals", "docs/capabilities/forecast/11_irregular_timestamps" ] }, { "group": "Historical Anomaly Detection", "pages": [ "docs/capabilities/historical-anomaly-detection/01_quickstart", "docs/capabilities/historical-anomaly-detection/02_anomaly_exogenous", "docs/capabilities/historical-anomaly-detection/03_anomaly_detection_date_features", "docs/capabilities/historical-anomaly-detection/04_confidence_levels" ] }, { "group": "Online Anomaly Detection", "pages": [ "docs/capabilities/online-anomaly-detection/01_quickstart", "docs/capabilities/online-anomaly-detection/02_adjusting_detection_process", "docs/capabilities/online-anomaly-detection/03_univariate_vs_multivariate_anomaly_detection" ] } ] }, { "group": "Deployment", "pages": [ "docs/deployment/2_azure_ai" ] }, { "group": "Tutorials", "pages": [ "docs/tutorials/20_anomaly_detection", { "group": "Exogenous variables", "pages": [ "docs/tutorials/01_exogenous_variables", "docs/tutorials/02_holidays", "docs/tutorials/03_categorical_variables", "docs/tutorials/21_shap_values" ] }, { "group": "Training", "pages": [ "docs/tutorials/04_longhorizon", "docs/tutorials/05_multiple_series" ] }, { "group": "Fine-tuning", "pages": [ "docs/tutorials/06_finetuning", "docs/tutorials/061_reusing_finetuned_models", "docs/tutorials/07_loss_function_finetuning", "docs/tutorials/23_finetune_depth_finetuning" ] }, { "group": "Validation", "pages": [ "docs/tutorials/08_cross_validation", "docs/tutorials/09_historical_forecast" ] }, { "group": "Uncertainty quantification", "pages": [ "docs/tutorials/10_uncertainty_quantification_with_quantile_forecasts", "docs/tutorials/11_uncertainty_quantification_with_prediction_intervals" ] }, { "group": "Special Topics", "pages": [ "docs/tutorials/13_bounded_forecasts", "docs/tutorials/14_hierarchical_forecasting", "docs/tutorials/23_temporalhierarchical", "docs/tutorials/15_missing_values", "docs/tutorials/22_how_to_improve_forecast_accuracy" ] }, { "group": "Computing at scale", "pages": [ "docs/tutorials/16_computing_at_scale", "docs/tutorials/17_computing_at_scale_spark_distributed", "docs/tutorials/18_computing_at_scale_dask_distributed", "docs/tutorials/19_computing_at_scale_ray_distributed" ] } ] }, { "group": "Use cases", "pages": [ "docs/use-cases/1_forecasting_web_traffic", "docs/use-cases/2_bitcoin_price_prediction", "docs/use-cases/3_electricity_demand", "docs/use-cases/4_intermittent_demand", "docs/use-cases/5_what_if_pricing_scenarios_in_retail" ] }, { "group": "API Reference", "pages": [ "nixtla_client", "date_features", "docs/reference/03_excel_addin", "docs/reference/04_nixtlar" ] } ] }