# This code is based on the revised code from fastchat based on tatsu-lab/stanford_alpaca. from dataclasses import dataclass, field import json import math import logging import os from typing import Dict, Optional, List import torch from torch.utils.data import Dataset from deepspeed import zero from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus import transformers from transformers import Trainer, GPTQConfig, deepspeed from transformers.trainer_pt_utils import LabelSmoother from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training from accelerate.utils import DistributedType from monkey_model.modeling_monkey import MonkeyLMHeadModel from monkey_model.tokenization_qwen import QWenTokenizer from monkey_model.configuration_monkey import MonkeyConfig IGNORE_TOKEN_ID = LabelSmoother.ignore_index @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="") @dataclass class DataArguments: data_path: str = field( default=None, metadata={"help": "Path to the training data."} ) eval_data_path: str = field( default=None, metadata={"help": "Path to the evaluation data."} ) lazy_preprocess: bool = False @dataclass class TrainingArguments(transformers.TrainingArguments): cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") model_max_length: int = field( default=8192, metadata={ "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." }, ) use_lora: bool = False fix_vit: bool = True @dataclass class LoraArguments: lora_r: int = 16 lora_alpha: int = 32 lora_dropout: float = 0.05 lora_target_modules: List[str] = field( default_factory=lambda: ["in_proj","out_proj","c_fc"] ##["in_proj","out_proj","c_fc"] ) lora_weight_path: str = "" lora_bias: str = "none" q_lora: bool = False def maybe_zero_3(param): if hasattr(param, "ds_id"): assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE with zero.GatheredParameters([param]): param = param.data.detach().cpu().clone() else: param = param.detach().cpu().clone() return param # Borrowed from peft.utils.get_peft_model_state_dict def get_peft_state_maybe_zero_3(named_params, bias): if bias == "none": to_return = {k: t for k, t in named_params if "lora_" in k} elif bias == "all": to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} elif bias == "lora_only": to_return = {} maybe_lora_bias = {} lora_bias_names = set() for k, t in named_params: if "lora_" in k: to_return[k] = t bias_name = k.split("lora_")[0] + "bias" lora_bias_names.add(bias_name) elif "bias" in k: maybe_lora_bias[k] = t for k, t in maybe_lora_bias: if bias_name in lora_bias_names: to_return[bias_name] = t else: raise NotImplementedError to_return = {k: maybe_zero_3(v) for k, v in to_return.items()} return to_return local_rank = None def rank0_print(*args): if local_rank == 0: print(*args) def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str, bias="none"): """Collects the state dict and dump to disk.""" # check if zero3 mode enabled if deepspeed.is_deepspeed_zero3_enabled(): state_dict = trainer.model_wrapped._zero3_consolidated_16bit_state_dict() else: state_dict = trainer.model.state_dict() if trainer.args.should_save and trainer.args.local_rank == 0: trainer._save(output_dir, state_dict=state_dict) def format_tokenizer(tokenizer, message, return_target=False, label=False): _input_ids = tokenizer(message).input_ids input_ids = _input_ids if return_target: if label: target = input_ids else: target = [IGNORE_TOKEN_ID] * (len(_input_ids)) return input_ids, target else: return input_ids def preprocess( source, tokenizer, max_len, system_message: str = "You are a helpful assistant.", padding=True ): # Apply prompt templates input_ids, targets = [], [] user, assistant = source[0], source[1] user_input = user['value'] assistant_input = assistant['value'] message_l = [user_input, assistant_input] for i, message in enumerate(message_l): try: _input_ids, _target = format_tokenizer(tokenizer, message, return_target=True, label=True if i == len(message_l) - 1 else False) # 有些text会有img标签,所以使用作为特殊id有问题,标签数量不对等会报错 except Exception as e: print(e) continue input_ids += _input_ids targets += _target assert len(_input_ids) == len(_input_ids) if padding: input_ids += [-1]+[tokenizer.pad_token_id] * (max_len - len(input_ids)-1) targets += [tokenizer.pad_token_id] +[IGNORE_TOKEN_ID] * (max_len - len(targets)-1) targets = targets[:max_len] input_ids = input_ids[:max_len] input_ids = torch.tensor(input_ids, dtype=torch.int) targets = torch.tensor(targets, dtype=torch.int) attention_mask=input_ids.ne(tokenizer.pad_token_id) input_ids[input_ids == -1 ] = tokenizer.pad_token_id return dict( input_ids=input_ids, labels=targets, attention_mask=attention_mask, ) class SupervisedDataset(Dataset): """Dataset for supervised fine-tuning.""" def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int): super(SupervisedDataset, self).__init__() rank0_print("Formatting inputs...") sources = [example["conversations"] for example in raw_data] data_dict = preprocess(sources, tokenizer, max_len) self.input_ids = data_dict["input_ids"] self.labels = data_dict["labels"] self.attention_mask = data_dict["attention_mask"] def __len__(self): return len(self.input_ids) def __getitem__(self, i) -> Dict[str, torch.Tensor]: return dict( input_ids=self.input_ids[i], labels=self.labels[i], attention_mask=self.attention_mask[i], ) class LazySupervisedDataset(Dataset): """Dataset for supervised fine-tuning.""" def __init__(self, raw_data, tokenizer: transformers.PreTrainedTokenizer, max_len: int): super(LazySupervisedDataset, self).__init__() self.tokenizer = tokenizer self.max_len = max_len rank0_print("Formatting inputs...Skip in lazy mode") self.tokenizer = tokenizer self.raw_data = raw_data self.cached_data_dict = {} def __len__(self): return len(self.raw_data) def __getitem__(self, i) -> Dict[str, torch.Tensor]: if i in self.cached_data_dict: return self.cached_data_dict[i] ret = preprocess(self.raw_data[i]["conversations"], self.tokenizer, self.max_len) ret = dict( input_ids=ret["input_ids"], labels=ret["labels"], attention_mask=ret["attention_mask"], ) self.cached_data_dict[i] = ret return ret def make_supervised_data_module( tokenizer: transformers.PreTrainedTokenizer, data_args, max_len, ) -> Dict: """Make dataset and collator for supervised fine-tuning.""" dataset_cls = ( LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset ) rank0_print("Loading data...") train_json = json.load(open(data_args.data_path, "r")) train_dataset = dataset_cls(train_json, tokenizer=tokenizer, max_len=max_len) if data_args.eval_data_path: eval_json = json.load(open(data_args.eval_data_path, "r")) eval_dataset = dataset_cls(eval_json, tokenizer=tokenizer, max_len=max_len) else: eval_dataset = None return dict(train_dataset=train_dataset, eval_dataset=eval_dataset) def print_trainable_params(model: torch.nn.Module): trainable_params, all_param = 0, 0 for param in model.parameters(): num_params = param.numel() all_param += num_params if param.requires_grad: trainable_params += num_params rank0_print("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( trainable_params, all_param, 100 * trainable_params / all_param)) # for name,p in model.named_parameters(): # if p.requires_grad and "transformer.h" not in name: # print(name) def train(): global local_rank parser = transformers.HfArgumentParser( (ModelArguments, DataArguments, TrainingArguments, LoraArguments) ) ( model_args, data_args, training_args, lora_args, ) = parser.parse_args_into_dataclasses() if getattr(training_args, 'deepspeed', None) and getattr(lora_args, 'q_lora', False): training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED compute_dtype = ( torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32) ) local_rank = training_args.local_rank device_map = None world_size = int(os.environ.get("WORLD_SIZE", 1)) ddp = world_size != 1 if lora_args.q_lora: device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None if len(training_args.fsdp) > 0 or deepspeed.is_deepspeed_zero3_enabled(): logging.warning( "FSDP or ZeRO3 are not incompatible with QLoRA." ) # Set RoPE scaling factor config = MonkeyConfig.from_pretrained( "monkey_model", cache_dir=training_args.cache_dir, trust_remote_code=True, ) rank0_print(config) config.use_cache = False # Load model and tokenizer rank0_print("loading base model") model = MonkeyLMHeadModel.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=training_args.cache_dir, device_map=device_map, trust_remote_code=True, quantization_config=GPTQConfig( bits=4, disable_exllama=True ) if training_args.use_lora and lora_args.q_lora else None, ) tokenizer = QWenTokenizer.from_pretrained( "monkey_model", cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right", use_fast=False, trust_remote_code=True, ) tokenizer.pad_token_id = tokenizer.eod_id if not training_args.use_lora: if training_args.fix_vit and hasattr(model,'transformer') and hasattr(model.transformer,'visual'): model.transformer.visual.requires_grad_(False) if hasattr(model.transformer.visual,'attn_pool'): model.transformer.visual.attn_pool.requires_grad_(True) for k,v in model.named_parameters(): if "lora" in k : v.requires_grad_(True) if training_args.use_lora: if lora_args.q_lora or "chat" in model_args.model_name_or_path.lower(): modules_to_save = None else: modules_to_save = [] lora_config = LoraConfig( r=lora_args.lora_r, lora_alpha=lora_args.lora_alpha, target_modules=lora_args.lora_target_modules, lora_dropout=lora_args.lora_dropout, bias=lora_args.lora_bias, task_type="CAUSAL_LM", modules_to_save=modules_to_save # This argument serves for adding new tokens. ) model = get_peft_model(model, lora_config) if training_args.gradient_checkpointing: model.enable_input_require_grads() print_trainable_params(model) # Load data data_module = make_supervised_data_module( tokenizer=tokenizer, data_args=data_args, max_len=training_args.model_max_length ) # Start trainner trainer = Trainer( model=model, tokenizer=tokenizer, args=training_args, **data_module ) trainer.train() trainer.save_state() safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir, bias=lora_args.lora_bias) import numpy as np import random def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) # torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = False os.environ["PYTHONHASHSEED"] = str(seed) if __name__ == "__main__": setup_seed(46) train()