from typing import Any import torch from PIL import Image from argparse import ArgumentParser from lavis.models import load_model_and_preprocess import os import json from tqdm import tqdm import re def save_json(json_list,save_path): with open(save_path, 'w') as file: json.dump(json_list, file, indent=4) class blip_matching: def __init__(self, name, device) -> None: if "blip2" in name: model, vis_processors, text_processors = load_model_and_preprocess(name, "pretrain", device=device, is_eval=True) else: model, vis_processors, text_processors = load_model_and_preprocess(name, "large", device=device, is_eval=True) self.model=model self.vis_processors=vis_processors self.text_processors=text_processors self.device=device def match_score(self, img_src, caption, crop_box=None): raw_image = Image.open(img_src).convert("RGB") w,h=raw_image.size if crop_box is not None: raw_image = raw_image.crop((int(crop_box[0]*w), int(crop_box[1]*h), int(crop_box[2]*w), int(crop_box[3]*h))) img = self.vis_processors["eval"](raw_image).unsqueeze(0).to(self.device) txt = self.text_processors["eval"](caption) itm_output = self.model({"image": img, "text_input": txt}, match_head="itm") itm_scores = torch.nn.functional.softmax(itm_output, dim=1) return round(itm_scores[:, 1].item(), 3) def _get_args(): parser = ArgumentParser() parser.add_argument("--image_folder", type=str, default="./images") parser.add_argument("--ann_path", type=str, default="./outputs/sam_blip2.json") parser.add_argument("--output_path", type=str, default="./outputs/sam_blip2_score.json") parser.add_argument("--device", type=str, default="cuda:0") args = parser.parse_args() return args if __name__=="__main__": args = _get_args() # blip_image_text_matching or blip2_image_text_matching model = blip_matching(name="blip2_image_text_matching", device=args.device) with open(args.ann_path, 'r') as f: data = json.load(f) for i in tqdm(range(len(data))): img_id = data[i]["img_id"] path=os.path.join(args.image_folder, img_id) for j in range(len(data[i]['objects'])): score = model.match_score(img_src=path,caption=data[i]['objects'][j]['caption'],crop_box=data[i]['objects'][j]['box']) data[i]['objects'][j]['score']=score save_json(json_list=data, save_path=args.output_path)