import argparse import itertools import json import os import random import time from functools import partial from typing import Optional import sys import torch from tqdm import tqdm from vqa import VQA from vqa_eval import VQAEval sys.path.append("pathto/Monkey/") from monkey_model.modeling_textmonkey import TextMonkeyLMHeadModel from monkey_model.tokenization_qwen import QWenTokenizer import numpy as np from pathlib import Path import re time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime()) from monkey_model.configuration_qwen import QWenConfig from monkey_model.configuration_monkey import MonkeyConfig ds_collections = { 'docvqa_test': { 'train': 'data/docvqa/train.jsonl', 'test': 'data/docvqa/test_ans.jsonl', 'metric': 'accuracy', 'max_new_tokens': 100, }, 'ocrvqa_test': { 'train': 'data/ocrvqa/ocrvqa_test.jsonl', 'test': 'data/ocrvqa/ocrvqa_test.jsonl', 'metric': 'accuracy', 'max_new_tokens': 100, }, 'chartqa': { 'train': 'data/chartqa/train_augmented.jsonl', 'test': 'data/chartqa/chartqa.jsonl', 'metric': 'accuracy', 'max_new_tokens': 100, }, 'FUNSD': { 'train': 'data/chartqa/train_augmented.jsonl', 'test': 'data/FUNSD/FUNSD_test.jsonl', 'metric': 'accuracy', 'max_new_tokens': 100, }, 'SROIE_test': { 'train': 'data/chartqa/train_augmented.jsonl', 'test': 'data/SROIE/SROIE_test.jsonl', 'metric': 'accuracy', 'max_new_tokens': 100, }, 'POIE': { 'train': 'data/chartqa/train_augmented.jsonl', 'test': 'data/POIE/POIE_test.jsonl', 'metric': 'accuracy', 'max_new_tokens': 100, }, 'textvqa_val': { 'train': 'data/textvqa/textvqa_train.jsonl', 'test': 'data/textvqa/textvqa_val.jsonl', 'question': 'data/textvqa/textvqa_val_questions.json', 'annotation': 'data/textvqa/textvqa_val_annotations.json', 'metric': 'accuracy', 'max_new_tokens': 100, }, 'infovqa_test': { 'train': 'data/infographicVQA/infovqa.jsonl', 'test': 'data/infographicVQA/infovqa_test.jsonl', 'metric': 'accuracy', 'max_new_tokens': 100, }, 'stvqa_test': { 'train': 'data/STVQA/stvqa.jsonl', 'test': 'data/STVQA/stvqa.jsonl', 'metric': 'accuracy', 'max_new_tokens': 100, }, } def levenshtein_distance(s1, s2): if len(s1) > len(s2): s1, s2 = s2, s1 distances = range(len(s1) + 1) for i2, c2 in enumerate(s2): distances_ = [i2+1] for i1, c1 in enumerate(s1): if c1 == c2: distances_.append(distances[i1]) else: distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1]))) distances = distances_ return distances[-1] def normANLS(s1,s2): dist = levenshtein_distance(s1.lower().strip(),s2.lower().strip()) length = max(len(s1),len(s2)) value = 0.0 if length == 0 else float(dist) / float(length) return value def evaluateANLS(ans_list): anls_threshold = 0.5 anls_list = [] for predict_pair in ans_list: answer = predict_pair["answer"].strip() gt_list = predict_pair["annotation"] value_list = [] for gt_single in gt_list: if gt_single.strip().lower() in answer.strip().lower(): value_list.append(0) value_list.append(normANLS(gt_single,answer)) question_result = 1 - min(value_list) if (question_result < anls_threshold) : question_result = 0 anls_list.append(question_result) return np.mean(anls_list) # https://github.com/google-research/pix2struct/blob/main/pix2struct/metrics.py#L81 def relaxed_correctness(target: str, prediction: str, max_relative_change: float = 0.05) -> bool: """Calculates relaxed correctness. The correctness tolerates certain error ratio defined by max_relative_change. See https://arxiv.org/pdf/2203.10244.pdf, end of section 5.1: “Following Methani et al. (2020), we use a relaxed accuracy measure for the numeric answers to allow a minor inaccuracy that may result from the automatic data extraction process. We consider an answer to be correct if it is within 5% of the gold answer. For non-numeric answers, we still need an exact match to consider an answer to be correct.” Args: target: Target string. prediction: Predicted string. max_relative_change: Maximum relative change. Returns: Whether the prediction was correct given the specified tolerance. """ def _to_float(text: str) -> Optional[float]: try: if text.endswith('%'): # Convert percentages to floats. return float(text.rstrip('%')) / 100.0 else: return float(text) except ValueError: return None prediction_float = _to_float(prediction) target_float = _to_float(target) if prediction_float is not None and target_float: relative_change = abs(prediction_float - target_float) / abs(target_float) return relative_change <= max_relative_change else: return prediction.lower() == target.lower() def evaluate_relaxed_accuracy(entries): scores = [] for elem in entries: if isinstance(elem['annotation'], str): elem['annotation'] = [elem['annotation']] score = max([ relaxed_correctness(elem['answer'].strip(), ann) for ann in elem['annotation'] ]) scores.append(score) return sum(scores) / len(scores) def evaluate_exact_match_accuracy(entries): scores = [] for elem in entries: if isinstance(elem['annotation'], str): elem['annotation'] = [elem['annotation']] quad_blocks = re.findall(r'(.*?)', elem['answer']) for quad_block in quad_blocks: elem['answer'] = elem['answer'].replace('' + quad_block + '', '') quad_blocks = re.findall(r'(.*?)', elem['answer']) for quad_block in quad_blocks: elem['answer'] = elem['answer'].replace('' + quad_block + '', '') score = max([ (1.0 if (ann.strip().lower() in elem['answer'].strip().lower() ) else 0.0) for ann in elem['annotation'] ]) scores.append(score) return sum(scores) / len(scores) def collate_fn(batches, tokenizer): image_paths = [_['image_path'] for _ in batches] questions = [_['question'] for _ in batches] question_ids = [_['question_id'] for _ in batches] annotations = [_['annotation'] for _ in batches] input_ids = tokenizer(questions, return_tensors='pt', padding='longest') return image_paths,question_ids, input_ids.input_ids, input_ids.attention_mask, annotations class VQADataset(torch.utils.data.Dataset): def __init__(self, train, test, prompt, few_shot): self.test = open(test).readlines() self.prompt = prompt self.few_shot = few_shot if few_shot > 0: self.train = open(train).readlines() def __len__(self): return len(self.test) def __getitem__(self, idx): data = json.loads(self.test[idx].strip()) image, question, question_id, annotation = data['image'], data[ 'question'], data['question_id'], data.get('answer', None) few_shot_prompt = '' if self.few_shot > 0: few_shot_samples = random.sample(self.train, self.few_shot) for sample in few_shot_samples: sample = json.loads(sample.strip()) few_shot_prompt += self.prompt.format( sample['image'], sample['question']) + f" {sample['answer']}" return { 'image_path':image, 'question': few_shot_prompt + self.prompt.format(image, question), 'question_id': question_id, 'annotation': annotation } class InferenceSampler(torch.utils.data.sampler.Sampler): def __init__(self, size): self._size = int(size) assert size > 0 self._rank = torch.distributed.get_rank() self._world_size = torch.distributed.get_world_size() self._local_indices = self._get_local_indices(size, self._world_size, self._rank) @staticmethod def _get_local_indices(total_size, world_size, rank): shard_size = total_size // world_size left = total_size % world_size shard_sizes = [shard_size + int(r < left) for r in range(world_size)] begin = sum(shard_sizes[:rank]) end = min(sum(shard_sizes[:rank + 1]), total_size) return range(begin, end) def __iter__(self): yield from self._local_indices def __len__(self): return len(self._local_indices) def evaluate(model,tokenizer,prompt,args,dataset_name): dataset_info = ds_collections[dataset_name] dataset = VQADataset( train=dataset_info['train'], test=dataset_info['test'], prompt=prompt, few_shot=args.few_shot, ) len_dataset = len(dataset) if torch.distributed.get_rank() == 0: print(f"there have {len(dataset)} in {dataset_name}") dataloader = torch.utils.data.DataLoader( dataset=dataset, sampler=InferenceSampler(len_dataset), batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True, drop_last=False, collate_fn=partial(collate_fn, tokenizer=tokenizer), ) outputs = [] for image_paths,question_ids, input_ids, attention_mask,annotations in tqdm(dataloader): pred = model.generate( input_ids=input_ids.cuda(), attention_mask=attention_mask.cuda(), do_sample=False, num_beams=1, max_new_tokens=dataset_info['max_new_tokens'], min_new_tokens=1, length_penalty=1, num_return_sequences=1, output_hidden_states=True, use_cache=True, pad_token_id=tokenizer.eod_id, eos_token_id=tokenizer.eod_id, ) answers = [ tokenizer.decode(_[input_ids.size(1):].cpu(), skip_special_tokens=True).strip() for _ in pred ] answers = [answer.replace("<|endoftext|>","") for answer in answers] questions = [ tokenizer.decode(_[:input_ids.size(1)].cpu(), skip_special_tokens=False).strip() for _ in pred ] questions = [question.replace("<|endoftext|>","") for question in questions] print(questions[0],answers[0]) for image_path,question,question_id, answer, annotation in zip(image_paths,questions,question_ids, answers, annotations): if dataset_info['metric'] == 'vqa_score': outputs.append({ 'image_path':image_path, 'question_id': question_id, 'answer': answer, 'question':question }) elif dataset_info['metric'] == 'anls': if isinstance(annotation,list): outputs.append({ 'image_path':image_path, 'questionId': question_id, 'answer': answer, 'annotation': annotation, 'question':question }) else: outputs.append({ 'image_path':image_path, 'questionId': question_id, 'answer': answer, 'annotation': [annotation], 'question':question }) elif dataset_info['metric'] == 'accuracy': outputs.append({ 'image_path':image_path, 'questionId': question_id, 'answer': answer, 'annotation': annotation, 'question':question }) elif dataset_info['metric'] == 'accuracy_recog': outputs.append({ 'image_path':image_path, 'questionId': question_id, 'answer': answer, 'annotation': annotation, 'question':question }) elif dataset_name in ["chartqa_ureader"]: outputs.append({ 'image_path':image_path, 'answer': answer, 'annotation': annotation, 'question':question, 'question':question }) else: raise NotImplementedError torch.distributed.barrier() world_size = torch.distributed.get_world_size() merged_outputs = [None for _ in range(world_size)] torch.distributed.all_gather_object(merged_outputs, json.dumps(outputs)) merged_outputs = [json.loads(_) for _ in merged_outputs] merged_outputs = [_ for _ in itertools.chain.from_iterable(merged_outputs)] if torch.distributed.get_rank() == 0: print(f"Evaluating {dataset_name} ...") results_file = f'{dataset_name}.json' root_path = os.path.join("result_doc",args.save_name,time_prefix) Path(root_path).mkdir(exist_ok=True,parents=True) results_file = os.path.join(root_path,results_file) json.dump(merged_outputs, open(results_file, 'w',encoding="utf-8"), ensure_ascii=False,indent=2) if dataset_info['metric'] == 'vqa_score': vqa = VQA(dataset_info['annotation'],dataset_info['question']) results = vqa.loadRes( resFile=results_file, quesFile=dataset_info['question']) vqa_scorer = VQAEval(vqa, results, n=2) question_id_list = [item["question_id"]for item in merged_outputs] vqa_scorer.evaluate(question_id_list) print(vqa_scorer.accuracy) results_file = results_file.replace("json","txt") with open(results_file,"w") as fp: fp.write(dataset_name+"\n") fp.writelines(str(vqa_scorer.accuracy["overall"])+'\n') elif dataset_info['metric'] == 'anls': anls_res = evaluateANLS(merged_outputs) print(anls_res) results_file = results_file.replace("json","txt") with open(results_file,"w") as fp: fp.write(dataset_name+"\n") fp.writelines(str(anls_res)+'\n') elif dataset_info['metric'] == 'relaxed_accuracy': print({ 'relaxed_accuracy': evaluate_relaxed_accuracy(merged_outputs) }) results_file = results_file.replace("json","txt") with open(results_file,"w") as fp: fp.write(dataset_name+"\n") fp.writelines(str(evaluate_relaxed_accuracy(merged_outputs))+'\n') elif dataset_info['metric'] == 'accuracy': if 'gqa' in dataset_name: for entry in merged_outputs: response = entry['answer'] response = response.strip().split('.')[0].split( ',')[0].split('!')[0].lower() if 'is ' in response: response = response.split('is ')[1] if 'are ' in response: response = response.split('are ')[1] if 'a ' in response: response = response.split('a ')[1] if 'an ' in response: response = response.split('an ')[1] if 'the ' in response: response = response.split('the ')[1] if ' of' in response: response = response.split(' of')[0] response = response.strip() entry['answer'] = response acc = evaluate_exact_match_accuracy(merged_outputs) print({'accuracy': acc}) results_file = results_file.replace("json","txt") with open(results_file,"w") as fp: fp.write(dataset_name+"\n") fp.writelines(str(acc)+'\n') torch.distributed.barrier() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', type=str, default='') parser.add_argument('--dataset', type=str, default='') parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--num-workers', type=int, default=1) parser.add_argument('--few-shot', type=int, default=0) parser.add_argument('--seed', type=int, default=3407) parser.add_argument("--save_name",type=str,default="test") args = parser.parse_args() torch.distributed.init_process_group( backend='nccl', world_size=int(os.getenv('WORLD_SIZE', '1')), rank=int(os.getenv('RANK', '0')), ) torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0))) config = MonkeyConfig.from_pretrained( args.checkpoint, trust_remote_code=True, ) print(config) model = TextMonkeyLMHeadModel.from_pretrained(args.checkpoint, config=config, device_map='cuda', trust_remote_code=True).eval() tokenizer = QWenTokenizer.from_pretrained(args.checkpoint, trust_remote_code=True) tokenizer.padding_side = 'left' tokenizer.pad_token_id = tokenizer.eod_id tokenizer.IMG_TOKEN_SPAN = config.visual["n_queries"] random.seed(args.seed) for k,_ in ds_collections.items(): # prompt = '{} {} Provide the location coordinates of the answer when answering the question. Answer:' # prompt = '{} Convert the document in this image to json format. Answer: ' prompt = '{} {} Answer:' evaluate(model,tokenizer,prompt,args,k)