Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
textmonkey_pytorch
Commits
b1e6136c
Commit
b1e6136c
authored
Dec 26, 2023
by
yuluoyun
Browse files
data generation
parent
00946203
Changes
404
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
229 additions
and
0 deletions
+229
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml
...terNet2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml
+5
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml
...terNet2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml
+8
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml
...rty/CenterNet2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml
+10
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml
...ty/CenterNet2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml
+9
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml
...figs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml
+9
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml
...igs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml
+9
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml
...igs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml
+9
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py
...configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py
+8
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml
...nfigs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml
+6
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml
...nfigs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml
+9
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml
...figs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml
+6
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml
...figs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml
+9
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py
...onfigs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py
+8
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
...figs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
+6
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou.yaml
...COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou.yaml
+12
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
...figs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
+9
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml
...CO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml
+13
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py
...-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py
+34
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py
...-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py
+35
-0
data_generation/grit/third_party/CenterNet2/configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
...erNet2/configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
+15
-0
No files found.
Too many changes to show.
To preserve performance only
404 of 404+
files are displayed.
Plain diff
Email patch
data_generation/grit/third_party/CenterNet2/configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RetinaNet.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS
:
DEPTH
:
50
data_generation/grit/third_party/CenterNet2/configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RetinaNet.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
RESNETS
:
DEPTH
:
50
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
data_generation/grit/third_party/CenterNet2/configs/COCO-Detection/rpn_R_50_C4_1x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
META_ARCHITECTURE
:
"
ProposalNetwork"
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
False
RESNETS
:
DEPTH
:
50
RPN
:
PRE_NMS_TOPK_TEST
:
12000
POST_NMS_TOPK_TEST
:
2000
data_generation/grit/third_party/CenterNet2/configs/COCO-Detection/rpn_R_50_FPN_1x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
META_ARCHITECTURE
:
"
ProposalNetwork"
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
False
RESNETS
:
DEPTH
:
50
RPN
:
POST_NMS_TOPK_TEST
:
2000
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-101.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
101
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-DilatedC5.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-101.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
101
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-101.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
101
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py
0 → 100644
View file @
b1e6136c
from
..common.train
import
train
from
..common.optim
import
SGD
as
optimizer
from
..common.coco_schedule
import
lr_multiplier_1x
as
lr_multiplier
from
..common.data.coco
import
dataloader
from
..common.models.mask_rcnn_c4
import
model
model
.
backbone
.
freeze_at
=
2
train
.
init_checkpoint
=
"detectron2://ImageNetPretrained/MSRA/R-50.pkl"
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-DilatedC5.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-DilatedC5.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py
0 → 100644
View file @
b1e6136c
from
..common.optim
import
SGD
as
optimizer
from
..common.coco_schedule
import
lr_multiplier_1x
as
lr_multiplier
from
..common.data.coco
import
dataloader
from
..common.models.mask_rcnn_fpn
import
model
from
..common.train
import
train
model
.
backbone
.
bottom_up
.
freeze_at
=
2
train
.
init_checkpoint
=
"detectron2://ImageNetPretrained/MSRA/R-50.pkl"
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
RPN
:
BBOX_REG_LOSS_TYPE
:
"
giou"
BBOX_REG_LOSS_WEIGHT
:
2.0
ROI_BOX_HEAD
:
BBOX_REG_LOSS_TYPE
:
"
giou"
BBOX_REG_LOSS_WEIGHT
:
10.0
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
RESNETS
:
DEPTH
:
50
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
MASK_ON
:
True
WEIGHTS
:
"
detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
PIXEL_STD
:
[
57.375
,
57.120
,
58.395
]
RESNETS
:
STRIDE_IN_1X1
:
False
# this is a C2 model
NUM_GROUPS
:
32
WIDTH_PER_GROUP
:
8
DEPTH
:
101
SOLVER
:
STEPS
:
(210000, 250000)
MAX_ITER
:
270000
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py
0 → 100644
View file @
b1e6136c
from
..common.optim
import
SGD
as
optimizer
from
..common.coco_schedule
import
lr_multiplier_1x
as
lr_multiplier
from
..common.data.coco
import
dataloader
from
..common.models.mask_rcnn_fpn
import
model
from
..common.train
import
train
from
detectron2.config
import
LazyCall
as
L
from
detectron2.modeling.backbone
import
RegNet
from
detectron2.modeling.backbone.regnet
import
SimpleStem
,
ResBottleneckBlock
# Replace default ResNet with RegNetX-4GF from the DDS paper. Config source:
# https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnetx/RegNetX-4.0GF_dds_8gpu.yaml#L4-L9 # noqa
model
.
backbone
.
bottom_up
=
L
(
RegNet
)(
stem_class
=
SimpleStem
,
stem_width
=
32
,
block_class
=
ResBottleneckBlock
,
depth
=
23
,
w_a
=
38.65
,
w_0
=
96
,
w_m
=
2.43
,
group_width
=
40
,
freeze_at
=
2
,
norm
=
"FrozenBN"
,
out_features
=
[
"s1"
,
"s2"
,
"s3"
,
"s4"
],
)
model
.
pixel_std
=
[
57.375
,
57.120
,
58.395
]
optimizer
.
weight_decay
=
5e-5
train
.
init_checkpoint
=
(
"https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906383/RegNetX-4.0GF_dds_8gpu.pyth"
)
# RegNets benefit from enabling cudnn benchmark mode
train
.
cudnn_benchmark
=
True
data_generation/grit/third_party/CenterNet2/configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py
0 → 100644
View file @
b1e6136c
from
..common.optim
import
SGD
as
optimizer
from
..common.coco_schedule
import
lr_multiplier_1x
as
lr_multiplier
from
..common.data.coco
import
dataloader
from
..common.models.mask_rcnn_fpn
import
model
from
..common.train
import
train
from
detectron2.config
import
LazyCall
as
L
from
detectron2.modeling.backbone
import
RegNet
from
detectron2.modeling.backbone.regnet
import
SimpleStem
,
ResBottleneckBlock
# Replace default ResNet with RegNetY-4GF from the DDS paper. Config source:
# https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnety/RegNetY-4.0GF_dds_8gpu.yaml#L4-L10 # noqa
model
.
backbone
.
bottom_up
=
L
(
RegNet
)(
stem_class
=
SimpleStem
,
stem_width
=
32
,
block_class
=
ResBottleneckBlock
,
depth
=
22
,
w_a
=
31.41
,
w_0
=
96
,
w_m
=
2.24
,
group_width
=
64
,
se_ratio
=
0.25
,
freeze_at
=
2
,
norm
=
"FrozenBN"
,
out_features
=
[
"s1"
,
"s2"
,
"s3"
,
"s4"
],
)
model
.
pixel_std
=
[
57.375
,
57.120
,
58.395
]
optimizer
.
weight_decay
=
5e-5
train
.
init_checkpoint
=
(
"https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906838/RegNetY-4.0GF_dds_8gpu.pyth"
)
# RegNets benefit from enabling cudnn benchmark mode
train
.
cudnn_benchmark
=
True
data_generation/grit/third_party/CenterNet2/configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
0 → 100644
View file @
b1e6136c
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
KEYPOINT_ON
:
True
ROI_HEADS
:
NUM_CLASSES
:
1
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
0.5
# Keypoint AP degrades (though box AP improves) when using plain L1 loss
RPN
:
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2.
# 1000 proposals per-image is found to hurt box AP.
# Therefore we increase it to 1500 per-image.
POST_NMS_TOPK_TRAIN
:
1500
DATASETS
:
TRAIN
:
("keypoints_coco_2017_train",)
TEST
:
("keypoints_coco_2017_val",)
Prev
1
…
3
4
5
6
7
8
9
10
11
…
21
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment