Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
textmonkey_pytorch
Commits
a6d39f6a
Unverified
Commit
a6d39f6a
authored
Jan 03, 2024
by
Yuliang Liu
Committed by
GitHub
Jan 03, 2024
Browse files
Merge pull request #39 from Yuliang-Liu/dev
Data generation
parents
c7341cda
2189c3c4
Changes
404
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
293 additions
and
0 deletions
+293
-0
data_generation/grit/third_party/CenterNet2/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py
.../new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py
+14
-0
data_generation/grit/third_party/CenterNet2/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py
.../new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py
+14
-0
data_generation/grit/third_party/CenterNet2/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py
.../new_baselines/mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py
+30
-0
data_generation/grit/third_party/CenterNet2/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py
.../new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py
+14
-0
data_generation/grit/third_party/CenterNet2/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py
.../new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py
+14
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/README.md
.../third_party/CenterNet2/configs/quick_schedules/README.md
+8
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
...edules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
...ck_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
+11
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
...uick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
...figs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
+15
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
..._schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
+7
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
.../quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
+16
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
.../keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
+30
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
...k_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
+28
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
...s/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
+18
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
...quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
+7
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
...nfigs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
+14
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
.../quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
+22
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_DC5_inference_acc_test.yaml
...uick_schedules/mask_rcnn_R_50_DC5_inference_acc_test.yaml
+7
-0
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml
...uick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml
+10
-0
No files found.
Too many changes to show.
To preserve performance only
404 of 404+
files are displayed.
Plain diff
Email patch
data_generation/grit/third_party/CenterNet2/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py
0 → 100644
View file @
a6d39f6a
from
.mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
2
# 100ep -> 200ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
2
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
data_generation/grit/third_party/CenterNet2/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py
0 → 100644
View file @
a6d39f6a
from
.mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
4
# 100ep -> 400ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
4
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
data_generation/grit/third_party/CenterNet2/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py
0 → 100644
View file @
a6d39f6a
from
.mask_rcnn_R_50_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
from
detectron2.config
import
LazyCall
as
L
from
detectron2.modeling.backbone
import
RegNet
from
detectron2.modeling.backbone.regnet
import
SimpleStem
,
ResBottleneckBlock
# Config source:
# https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py # noqa
model
.
backbone
.
bottom_up
=
L
(
RegNet
)(
stem_class
=
SimpleStem
,
stem_width
=
32
,
block_class
=
ResBottleneckBlock
,
depth
=
22
,
w_a
=
31.41
,
w_0
=
96
,
w_m
=
2.24
,
group_width
=
64
,
se_ratio
=
0.25
,
norm
=
"SyncBN"
,
out_features
=
[
"s1"
,
"s2"
,
"s3"
,
"s4"
],
)
model
.
pixel_std
=
[
57.375
,
57.120
,
58.395
]
# RegNets benefit from enabling cudnn benchmark mode
train
.
cudnn_benchmark
=
True
data_generation/grit/third_party/CenterNet2/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py
0 → 100644
View file @
a6d39f6a
from
.mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
2
# 100ep -> 200ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
2
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
data_generation/grit/third_party/CenterNet2/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py
0 → 100644
View file @
a6d39f6a
from
.mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ
import
(
dataloader
,
lr_multiplier
,
model
,
optimizer
,
train
,
)
train
.
max_iter
*=
4
# 100ep -> 400ep
lr_multiplier
.
scheduler
.
milestones
=
[
milestone
*
4
for
milestone
in
lr_multiplier
.
scheduler
.
milestones
]
lr_multiplier
.
scheduler
.
num_updates
=
train
.
max_iter
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/README.md
0 → 100644
View file @
a6d39f6a
These are quick configs for performance or accuracy regression tracking purposes.
*
`*instance_test.yaml`
: can train on 2 GPUs. They are used to test whether the training can
successfully finish. They are not expected to produce reasonable training results.
*
`*inference_acc_test.yaml`
: They should be run using
`--eval-only`
. They run inference using pre-trained models and verify
the results are as expected.
*
`*training_acc_test.yaml`
: They should be trained on 8 GPUs. They finish in about an hour and verify the training accuracy
is within the normal range.
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
50.18
,
0.02
],
[
"
segm"
,
"
AP"
,
43.87
,
0.02
]]
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/cascade_mask_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/fast_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
45.70
,
0.02
]]
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/fast_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
PROPOSAL_FILES_TRAIN
:
("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
TEST
:
("coco_2017_val_100",)
PROPOSAL_FILES_TEST
:
("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl"
DATASETS
:
TEST
:
("keypoints_coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
52.47
,
0.02
],
[
"
keypoints"
,
"
AP"
,
67.36
,
0.02
]]
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_instant_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
ROI_HEADS
:
NUM_CLASSES
:
1
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val_100",)
TEST
:
("keypoints_coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.005
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_normalized_training_acc_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
BATCH_SIZE_PER_IMAGE
:
256
NUM_CLASSES
:
1
ROI_KEYPOINT_HEAD
:
POOLER_RESOLUTION
:
14
POOLER_SAMPLING_RATIO
:
2
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS
:
False
LOSS_WEIGHT
:
4.0
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
# Keypoint AP degrades when using plain L1 loss
RPN
:
SMOOTH_L1_BETA
:
0.2
# Keypoint AP degrades when using plain L1 loss
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val",)
TEST
:
("keypoints_coco_2017_val",)
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
SOLVER
:
WARMUP_FACTOR
:
0.33333333
WARMUP_ITERS
:
100
STEPS
:
(5500, 5800)
MAX_ITER
:
6000
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
55.35
,
1.0
],
[
"
keypoints"
,
"
AP"
,
76.91
,
1.0
]]
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/keypoint_rcnn_R_50_FPN_training_acc_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../Base-RCNN-FPN.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
KEYPOINT_ON
:
True
RESNETS
:
DEPTH
:
50
ROI_HEADS
:
BATCH_SIZE_PER_IMAGE
:
256
NUM_CLASSES
:
1
ROI_KEYPOINT_HEAD
:
POOLER_RESOLUTION
:
14
POOLER_SAMPLING_RATIO
:
2
ROI_BOX_HEAD
:
SMOOTH_L1_BETA
:
1.0
# Keypoint AP degrades when using plain L1 loss
RPN
:
SMOOTH_L1_BETA
:
0.2
# Keypoint AP degrades when using plain L1 loss
DATASETS
:
TRAIN
:
("keypoints_coco_2017_val",)
TEST
:
("keypoints_coco_2017_val",)
INPUT
:
MIN_SIZE_TRAIN
:
(640, 672, 704, 736, 768, 800)
SOLVER
:
WARMUP_FACTOR
:
0.33333333
WARMUP_ITERS
:
100
STEPS
:
(5500, 5800)
MAX_ITER
:
6000
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
53.5
,
1.0
],
[
"
keypoints"
,
"
AP"
,
72.4
,
1.0
]]
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_C4_GCV_instant_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.001
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
CLIP_GRADIENTS
:
ENABLED
:
True
CLIP_TYPE
:
"
value"
CLIP_VALUE
:
1.0
DATALOADER
:
NUM_WORKERS
:
2
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_C4_inference_acc_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
47.37
,
0.02
],
[
"
segm"
,
"
AP"
,
40.99
,
0.02
]]
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_C4_instant_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
MASK_ON
:
True
DATASETS
:
TRAIN
:
("coco_2017_val_100",)
TEST
:
("coco_2017_val_100",)
SOLVER
:
BASE_LR
:
0.001
STEPS
:
(30,)
MAX_ITER
:
40
IMS_PER_BATCH
:
4
DATALOADER
:
NUM_WORKERS
:
2
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_C4_training_acc_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../Base-RCNN-C4.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://ImageNetPretrained/MSRA/R-50.pkl"
ROI_HEADS
:
BATCH_SIZE_PER_IMAGE
:
256
MASK_ON
:
True
DATASETS
:
TRAIN
:
("coco_2017_val",)
TEST
:
("coco_2017_val",)
INPUT
:
MIN_SIZE_TRAIN
:
(600,)
MAX_SIZE_TRAIN
:
1000
MIN_SIZE_TEST
:
800
MAX_SIZE_TEST
:
1000
SOLVER
:
IMS_PER_BATCH
:
8
# base uses 16
WARMUP_FACTOR
:
0.33333
WARMUP_ITERS
:
100
STEPS
:
(11000, 11600)
MAX_ITER
:
12000
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
41.88
,
0.7
],
[
"
segm"
,
"
AP"
,
33.79
,
0.5
]]
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_DC5_inference_acc_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
47.44
,
0.02
],
[
"
segm"
,
"
AP"
,
42.94
,
0.02
]]
data_generation/grit/third_party/CenterNet2/configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml
0 → 100644
View file @
a6d39f6a
_BASE_
:
"
../COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"
MODEL
:
WEIGHTS
:
"
detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
DATASETS
:
TEST
:
("coco_2017_val_100",)
TEST
:
EXPECTED_RESULTS
:
[[
"
bbox"
,
"
AP"
,
47.34
,
0.02
],
[
"
segm"
,
"
AP"
,
42.67
,
0.02
],
[
"
bbox_TTA"
,
"
AP"
,
49.11
,
0.02
],
[
"
segm_TTA"
,
"
AP"
,
45.04
,
0.02
]]
AUG
:
ENABLED
:
True
MIN_SIZES
:
(700, 800)
# to save some time
Prev
1
…
7
8
9
10
11
12
13
14
15
…
21
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment